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Abstract of the Dissertation

Equation of State and Neutrino Interactions in
Neutron Star Matter with Quarks

by

Andrew William Steiner
Doctor of Philosophy

in

Physics and Astronomy
State University of New York
at Stony Brook
2002

Advisor: Madappa Prakash

In this dissertation, the structure and evolution of neutron stars
containing deconfined quark matter are investigated. The essential
microphysical ingredients, the equation of state and the associated
neutrino opacity that govern the macrophysical evolution of a neu-
tron star, are calculated and utilized in the first self-consistent dy-
namical calculation of a proto-neutron star containing quark mat-
ter.

It is shown that neutrino trapping inhibits the appearance of a
mixed phase that leads to proto-neutron star metastability. Suf-
ficiently massive stars containing negatively-charged, strongly in-
teracting, particles (including quarks) may collapse to black holes
during the first minute of evolution. In addition, the specific heat
of the quark-hadron mixed phase is found to be much larger than
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that of the kaon condensate-hadron mixed phase. This produces
core temperatures significantly lower in stars containing quarks
than in those not containing quarks.

Neutrino opacities in quark matter are calculated for the neu-
trino degeneracies and lepton contents encountered in a proto-
neutron star’s evolution. It is shown that the appearance of quarks
in baryonic matter drastically reduces the neutrino opacity for a
given entropy. Neutrino fluxes are calculated from proto-neutron
stars with and without quarks. Because the neutrino flux would
vanish if a black hole forms, metastability provides an obvious sig-
nal that quarks (or other types of strange matter) have appeared.
The metastability timescales for stars with quarks are intermediate
between those containing hyperons and kaon condensates.

The consequences of enforcing local color neutrality on the color
superconducting phases of quark matter are investigated. At zero
temperature, the energy cost of enforcing color and electric charge
neutrality in the color-flavor-locked (CFL) phase is lower than that
in the two-flavor-superconducting (2SC) phase, which favors the
formation of the CFL phase. With increasing temperature and
neutrino content, however, an unlocking transition occurs from the
CFL phase to the 25C phase. A new phase diagram for quark-
hadron matter is presented. The CFL phase is unlikely to appear
until after the neutrinos have left the star. The astrophysical im-
plications of the structure of this phase diagram are discussed.
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Preface
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Prakash, James M. Lattimer, and José A. Pons. Chapter 5 is based on work
performed with Sanjay Reddy and Madappa Prakash; this work has been
submitted for publication to Physical Review D (http://arxiv.org/abs/hep-
ph/0205201) which is not yet published. A paper on the long-term evolu-
tion of neutron stars with quark matter, which was not included here, can
be found in Physical Review Letters 85 (2000) 2048. This work was per-
formed in collaboration with Dany Page, Madappa Prakash, and James M.
Lattimer. The work in Chapter 4 was highlighted in a Physical Review Focus
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Chapter 1

Introduction

The primary goal of this work is to explore the effects of the presence of de-
confined quark matter on the structure and evolution of neutron stars. Special
emphasis will be placed on identifying distinctive signatures in basic observ-
ables of neutron stars, such as (i) their masses and radii, (ii) their surface
temperatures, and (iii) the neutrino luminosities from their newly-born state
(termed proto-neutron stars) in the aftermath of galactic core-collapse super-
novae. Essential microphysical ingredients are calculated, namely the equa-
tion of state and the associated neutrino opacity and emissivity which governs
the macrophysical evolution of a neutron star containing quark matter. These
physical inputs are then used to perform detailed simulations of a neutron star
from its birth to old age (up to millions of years). The existence of quark matter
in neutron stars might be confirmed by multiwavelength photon observations
with new generation satellites such as the Hubble Space Telescope (HST),
Chandra, and X-ray-Multi-Mirror-Newton (XMM-Newton), and by neutrino
signals from future galactic supernovae in detectors like Super-Kamiokande,
the Sudbury Neutrino Observatory (SNO), and others under consideration,
including the Underground Neutrino Observatory (UNO).

Neutron stars are nearly the only objects in the universe where matter at
extremely high baryon densities (up to 5-10 ny where ny &~ 0.16 fm=3 is the
empirical nuclear equilibrium density) are encountered. Matter at such high
densities is inaccessible in the laboratory except for very short times in rela-
tivistic heavy ion collisions. In such collisions, very high temperatures (up to
hundreds of MeV) are reached, much larger than what is encountered in neu-
tron stars. Combining knowledge from studies of neutron stars and heavy ion
collisions will enable us to construct the phase diagram of strongly interacting
matter in the temperature (7') versus baryon density (ng), or equivalently,
chemical potential (g) plane. Furthermore, the study of neutron stars offers
the opportunity to extend the phase diagram to include the lepton chemical



potential (1), since neutrinos are trapped inside neutron stars during their
early stages of evolution. Rapid developments, including those in this work,
are currently taking place in effective approaches to the theory of strong inter-
actions, Quantum Chromo-Dynamics (QCD), at high baryon densities. (Exact
calculations, such as the successful lattice simulations at finite 7', remain tech-
nically infeasible at finite up or np relevant for neutron stars). Some examples
of these developments include color superconductivity, Bose condensation, etc.
These possibilities offer the promise of establishing the properties of QCD in
the up — pr, — 7 plane in addition to delineating the composition, structure,
and evolution of both newly-born and old neutron stars. Undoubtedly, the
evergrowing observations of neutron stars will provide a testing ground where
the recent developments in the study of quark matter may be confirmed.

1.1 Neutron Stars

Neutron stars originate in supernovae. Baade and Zwicky [1] first sug-
gested in 1934 that neutron stars are the collapsed cores of massive (> 8 M)
stars and are created when the outer mantle of the progenitor red-giant star
explodes. The supernova explosion is powered by the gravitational binding
energy (~ 3GM?/5R ~ 3 x 1053(M /1.4 M)? ergs) released in stellar collapse.
The physical processes that drive a supernova explosion have been understood
by considering the entropy and the electron fraction of stellar matter. Illumi-
nating discussions that identify the various important stages may be found in
Refs. [2, 3, 4, 5]. Although heat is initially lost from the core due to the escape
of neutrinos, matter quickly becomes dense enough to be opaque to neutrinos,
shutting off this cooling. A general picture of collapse has now emerged. When
the core mass exceeds the Chandrashekar mass, which depends sensitively
on the electron fraction of matter, the core collapses. Electron degeneracy
pressure is no longer able to support the core against gravitational collapse.
Collapse is accelerated by processes like e~ + p — n + v,. The entropy per
nucleon of matter in a star’s core during collapse remains nearly constant, on
the order of unity. The combination of neutron degeneracy pressure and the
short-distance repulsion of nuclear interactions stops the stellar matter from
complete gravitational collapse when the central density is a few times nuclear
equilibrium density, ng. The pressure due to strong interactions of matter at
this density creates a shock wave at the outer boundary of the inner core. This
shock wave initially propagates outward, then stalls due to energy expended in
neutrino losses and the dissociation of nuclei. The core of the progenitor star
becomes a “proto-neutron star” (PNS). Numerical calculations [6, 7] have gen-



erally verified this picture, but have not yet succeeded in achieving an actual
“explosion” of the outer mantle that is as powerful as what is observed.

The subsequent evolution of the neutron star can be divided into two parts.
We will designate the evolution for the first minute after collapse as “short-
term evolution” and the subsequent evolution, up to a million years of age, as
“long-term evolution.” The short-term evolution, during which the neutron
star is referred to as a proto-neutron star, can be characterized by several
important stages (Figure 1.1):

o From Stage 1 to Stage 2: The shock wave which stalled is revived by
neutrino emission and ejects the outer layers of the star. The star radi-
ates copious amounts of neutrinos of all flavors. If the core is sufficiently
massive 2 2 — 3 Mg, or if it accretes enough mass from a companion, it
forms a black hole within a fraction of a second.

e From Stage 2 to Stage 3: The hot dense core, now a neutron star, is
sufficiently dense to keep neutrinos from leaving the star within the dy-
namical timescale of tens of seconds [8]. The neutrinos are effectively
“trapped”, since their mean free path (see Eq. (3.11))

A~ (10GEE? )™ ~ 2 ecm (1.1)

where G ~ 107°/m} is the Fermi coupling constant, E, ~ 10 MeV is
the neutrino energy, and pu,, ~ 1000 MeV is the nucleon chemical poten-
tial, is much shorter than the radius of the star (~ 15-20 km). The region
where neutrinos decouple from matter because the density is not suffi-
ciently large to trap them is called the “v-sphere”. Neutrinos outside of
this region escape from the star with a near-thermal distribution with a
temperature equal to that of the temperature of matter at the v-sphere.
In the core, the lepton number per baryon (Y7 ~ 0.4) is fixed by beta-
equilibrium reactions which occur much faster than the dynamical time
scale. Neutrinos leak out of the neutron star, which further heats the
matter through Joule heating, and the neutrino fraction, Y,, becomes
small on a time scale of tens of seconds. As explained below, the depar-
ture of the neutrinos allows the presence of deconfined quark matter in
the core. Several other components may appear at this stage, including
hyperons, and pion or kaon condensates. The “deleptonization” of the
star lowers its maximum mass. If the maximum mass is lowered below
the mass of the neutron star, it collapses to a black hole [9].

e From Stage 3 to Stage 4: The neutrino chemical potential vanishes as
the neutrinos become extremely non-degenerate. The star continues to



cool via neutrino emission and the temperature becomes less than 1 MeV
within a minute.

This general picture of proto-neutron star evolution proposed in Refs. [10,
11] has emerged from detailed numerical simulations and has been verified
for neutron stars containing solely nucleonic matter [12], those additionally
containing hyperons [12], and for neutron stars with kaon condensates [13].
One of the goals of this work is to perform similar calculations taking into
account the possible presence of deconfined quark matter [14], self-consistently
including the effects of quarks on the equation of state [15] and the interactions
of quarks with neutrinos [16].

The long-term evolution of a neutron star proceeds according to the follow-
ing scenario. After the first minute, the cooling wave that began in the core
is initially prohibited from reaching the surface by a high-entropy outer crust
which insulates the core. After ~ 100 years, the cooling wave diffuses to the
surface of the star and the star becomes nearly isothermal. In the so-called
“standard scenario” [17, 18| the proton content of the matter is quite low
(<10%), and the star must cool by the relatively slow modifed Urca processes

n+n—-n+pt+e + and p+p—p+n+e +1, (1.2)

in order to simultaneously satisfy energy and momentum conservation. How-
ever, if the proton fraction is sufficiently large, or if other exotic components
(hyperons, bose-condensates, or quarks) appear, then the star instead cools by
the more rapid direct Urca process

fi—= fote + 7, (1.3)

where f; and f5 represent any pair of particles involved in a beta-decay reac-
tion [19, 20]. The cooling history of the star thus depends sensitively on the
proton content of dense matter, which is not well known. Furthermore, cooling
rates can be significantly suppressed by superfluidity, which affects beta decay
processes involving nucleons, hyperons, and quarks, when the associated gap
is larger than the temperature.

Neutrino cooling dominates the thermal evolution for ~ 10° years, after
which time photon cooling is more important. After 107 years, the temperature
is so small that the neutron star becomes extremely difficult to detect.

Neutron star evolution is a complex process involving several microphysi-
cal ingredients. The equation of state of neutron-star matter determines the
structure and size of the neutron star as it evolves hydrostatically. The com-
position of dense matter affects global properties of the star, as well as its
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dynamical evolution. Since the energy released in neutron star evolution is
dominated by neutrinos for the first 10° years, both neutrino emissivities and
absorptivities of matter become critical. Neutrino transport is essential to
the short- and long-term evolution. These microphysical issues: the equation
of state and the v-interactions, will be directly addressed with regard to the
effects of deconfined quark matter.

1.2 The Equation of State

An equation of state gives the pressure or energy density as a function
of density for the various temperatures that are relevant to any particular
problem. In the case of neutron stars, the electron fraction of matter is an
additional variable and is directly connected with the isospin content of matter
through the conditions of charge neutrality and beta-equilibrium, as discussed
in detail below. A schematic representation of the many phases possibly en-
countered in a neutron star is shown in Figure 1.2. In order of increasing
density, at least four regions may be identified:

1. “Surface” (p < 10° g/cm3): Assuming no magnetic field and in the
absence of accretion from a companion star, matter in this region consists
of Fe peaked nuclei in a lattice surrounded by a gas of electrons.

2. “Outer crust” (10% g/cm® < p < ppq): In the outer crust, the equilibrium
nucleus chosen by the system varies; nuclei become increasingly neutron-
rich as the density increases. This picture is modified when we reach the
“neutron drip” density, pnq ~ 4.3 x 10!* g/cm?® where neutrons drip out
of nuclei to form a gas. These neutrons, no longer confined to nuclei, are
superfluid and pair in the 'S, channel.

3. “Inner crust” (png < P < Pruc): As the density increases beyond neutron
drip density, there is a phase transition to “nuclear matter”, a liquid-
like state of neutrons, protons, and a gas of electrons where there is
little geometrical structure [21, 22]. The neutrons and protons are both
likely superfluid at densities near nuclear matter density. Nuclear matter
resembles the matter in the center of large nuclei at the saturation density
Pruc ~ 2.8 x 10" g/em® = 0.16 fm~>. Near the phase transition density,
exotic nuclei with non-spherical shapes and small proton fraction supply
the transition between nuclei and nuclear matter [23, 24].

4. “Core” (pnue < p): Matter in the core above nuclear density generally
consists mostly of neutron-rich nuclear matter with electrons and muons.



Several other components may contribute, most notably hyperons and
Bose-condensates [10]. At some critical density, hadrons melt into nearly-
free quarks. The critical density for the hadron to quark transition,
pe ~ (5 — 10) ppuc, remains model dependent.

Ounly the equation of state above ~ pn,./2 will be discussed in detail here.
For the low-density region, we will use the results from Refs. [21, 25] in our
numerical calculations.

The description of hadronic matter at densities near nuclear matter density
requires a non-perturbative many-body approach. The first is a potential
model approach. Typically, a Hamiltonian with a nucleon-nucleon potential
is constructed to match two-body nucleon-nucleon scattering data (a recent
collection may be found in the Nijmegen database [26]) and the properties
of the deuteron. From this Hamiltonian, the nuclear-many body problem is
solved, either by diagrammatic (Brueckner-Bethe-Goldstone) or variational
(Monte Carlo) methods. Two-body interactions have benn found not to give
saturation at nuclear matter density, therefore, three-body forces must be
added to the original Hamiltonian [27]. These three-body forces, which are
not well understood, form a large part of the uncertainty in these methods.
One can write the energy density of nucleonic matter as

e=¢en+ep+Vi(ngn,T), (1.4)

where ¢; and n; (i = n,p) are the kinetic energy and number densities and V'
is a potential that contains information about the nucleon-nucleon interaction.
Potential model approaches are generally computationally intensive and have
acausal (the speed of sound in matter exceeds the speed of light) high-density
behavior [28, 29].

The second approach to the equation of state near nuclear matter density is
the use of field theory [30]. Here, one calculates the equation of state utilizing
the mean-field approximation to a local and renormalizable Lorentz-covariant
Lagrangian density. One can go beyond the mean-field approximation and
include loop effects, but this process often does not converge, owing to the large
coupling constants involved [31]. The coupling constants in the Lagrangian
are fixed to the empirical properties of nuclear matter. This method does
not allow a direct connection to nucleon-nucleon scattering, but is usually
computationally less intensive than the potential model approach, and is causal
at all densities because of Lorentz-covariance. A mean-field approximation will
be used for the hadronic equation of state in Chapters 2, 3, and 4.

Recently, renormalization group techniques have been brought to bear on
effective field theories [32]. In this approach, the fields in the Lagrangian are
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no longer fundamental fields. The most general Lagrangian consistent with
the symmetries of the problem involving the interaction of effective fields is
constructed. The constraint of renormalizability is dropped, and the theory
is intended to be used at the mean-field level. A momentum cutoff is often
imposed in order to integrate out the high-energy degrees of freedom that will
likely not contribute at the energies of interest. Appealing to a connection
to density functional theory, the energy density derived from the effective
Lagrangian is viewed as providing the energy functional that is guaranteed
to exist [33, 34]. This effective field theory prescription provides a scheme
in which the number of coupling constants may be truncated, so as to allow
for some predictive power. In the methods that we use, this scheme is valid
since the meson fields are small compared to the nucleon mass in the region
of interest.

Figure 1.2 displays some of the phases that may occur in the dense matter
of neutron stars. Proceeding clockwise from the top, the traditional neutron
star consists solely of neutrons and protons with a central density lower than
that necessary to produce exotic components. Alternatively a pion or kaon
condensate may appear in the core, softening the equation of state. The neu-
tron star may transit to a “strange-quark” star consisting almost entirely of
quarks. Hyperons may also appear at high densities, slowly replacing neu-
trons and protons with strangeness bearing hadrons. With increasing density,
deconfined quark matter may appear in the core. The thrust of this work is
concerned with the possible occurrence of quark matter in neutron star cores
and to explore its observable consequences.

1.3 The Equation of State of Quark Matter

Quark interactions are governed by Quantum-Chromodynamics (QCD),
the SU(3) gauge field theory that describes the interactions of quarks and
gluons through the Lagrangian

" . 1 a va
EQCD =1 (Zﬂij - mij) %‘ - ZFWF“ ) (1-5)
where the color field-strength tensor is given by Fj, = 0J,A; — 0,4} —
gf*c Al Ag, and the covariant derivative is given by I}, = 7#0;;0, + gy* A5t
The color indices 7, j in the fundamental representation take values from 1 to 3
and the color indices a, b, and c in the adjoint representation take values from
1 to 8. The input current quark masses are given in the diagonal mass matrix

m. QCD is asymptotically free; at high energies (or high densities) the value of



the coupling constant is small, and perturbation theory provides an excellent
description of experiment. The construction of the equation of state of quark
matter at the moderate densities that are relevant for neutron star studies,
however, is difficult because of non-perturbative effects. Further complicating
the problem, quarks are known not to be the effective degrees of freedom of
low-density matter. At low densities, quarks are “confined” into color-singlet
objects: “baryons” and “mesons”, and the phase transition from confined to
deconfined matter occurs only at high density or temperature. Numerical
simulations of QCD on the lattice, while successful at describing QCD at near
zero baryon density and finite temperature, are not yet useful for densities
and temperatures of relevance to neutron stars. These difficulties necessitate
the use of effective theories of QCD, two of which will be discussed in detail
and employed in this work: the MIT Bag model and the Nambu—Jona-Lasinio
(NJL) model.

1.3.1 The bag model

The essence of the MIT bag model lies in the assumption that non-
perturbative effects of QCD can be subsumed into one parameter called the
bag constant [35, 36]. This bag constant, which has the dimensions of pres-
sure, mimics the confinement of quarks into hadrons (“bags”). The pressure
in the bag model is given by

P=—-B+ Y [P(FG)+ P(Int)] (1.6)

i=u,d,s

where P; represents the free Fermi gas (FG) contribution to the pressure from
the up (u), down (d), and strange (s) quarks. (The remaining three flavors,
charmed, bottom, and top quarks, are suppressed at the densities of interest,
because of their large masses.) The effects of perturbative gluon exchange
are also often included as P;(Int) [37]. These corrections can be viewed as
introducing a density dependence in the bag constant B, which justifies the
use of an effective bag constant B.;; in many calculations.

1.3.2 Chiral symmetry and the NJL model

In the limit where the bare masses of the quarks is zero, the QCD La-
grangian is invariant under the chiral transformations

— pe N0 vector
b=

Y — 1/)€_i75x'9; axial — vector , (1.7)
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where 1 is a SU(3) vector made up of u,d, and s quarks, and X are the SU(3)
matrices. The ground state of QCD, however, is not invariant under the axial-
vector transformation and therefore the ground state is said to spontaneously
break chiral symmetry. As a result of this broken chiral symmetry, the quarks
acquire a “dynamically generated mass”. It is this dynamically generated
“quark” mass which gives mass to a “hadron”. At sufficiently large density or
temperature, this chiral symmetry is restored and the quarks retain only their
“current quark masses” which are an explicit input for the QCD Lagrangian.
The SU(3) Nambu—Jona-Lasinio (NJL) Lagrangian

L = q(id —mg)g + Gi[(QAkQ)2+(qi’75/\kQ)2]

— K [det;(q(14 v5)q) + dets(q(1 —5)q)] (1.8)

shares many of the same symmetries as QCD. The quark fields for the up,
down, and strange quarks are denoted by the spinor ¢ which is an SU(3) vec-
tor, Ay are the SU(3) matrices, my is a diagonal quark mass matrix, and G
and K are dimensionful coupling constants. This model dynamically breaks
chiral symmetry as described above. The six-fermion interaction, which mixes
the flavor degrees of freedom, breaks U4 (1) symmetry and is able to account
for the masses of the n (547 MeV) and n' (958 MeV) [38], which are oth-
erwise degenerate. The NJL model also qualitatively reproduces the meson
mass spectrum [39]. Gluons are not explicitly considered, but can be viewed
as moderating the strength of the four- and six-fermion interactions. This
model is non-renormalizable, and requires the presence of a momentum cutoff;
physically meaningful results are resticted to momentum scales well below this
cutoff scale.

The fundamental scale of QCD, Aqcp, has been estimated to be ~ 200
MeV; at this scale the strong coupling constant, g, is large. The scale for chiral
symmetry breaking can be estimated to be on the order of the momentum-
cutoff in the NJL Lagrangian. Above this cutoff, about 1 GeV, chiral symmetry
is restored. The region between these two scales is where we expect the NJL
model to be valid; in this region chiral symmetry is not yet fully restored.

1.3.3 QCD at high baryon density

At asymptotically high density, the relevant degrees of freedom in QCD are
quarks and gluons. The perturbative ground state is composed of nearly free
and nearly massless quarks interacting weakly through one-gluon exchange
in a phase where chiral symmetry has been restored. There is a singularity
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in small-angle quark scattering in perturbation theory that is regulated by
the presence of a superfluid gap; quarks with equal and opposite momenta
form Cooper pairs. These gaps, A, were first calculated in Refs. [40, 41] and
estimated to be on the order of 1 MeV. Recent interest in superconductivity
has been kindled by new results [42, 43] that give much larger gaps, of order
100 MeV. As in BCS theory, these gaps will weaken for 7' %, A/2. If quark
matter exists in neutron stars, gaps of order 100 MeV would almost certainly
have an effect on the phase structure of their cores and their evolution.

In QCD with three colors and three massless quark flavors, a pair of quarks
cannot be either a color or flavor singlet. The formation of Cooper pairs breaks
color and flavor symmetries separately. There is, however, a combination of
color and flavor symmetries which is not broken. This symmetry locks color
and flavor so that a rotation in color space is canceled by a corresponding
rotation in flavor space. The color-flavor-locked (CFL) phase is the most
likely candidate [42] for the ground state of quark matter at asymptotically
high densities. The condensate is of the form

(W) ~ Aere (1.9)

where « and S are color indices and a and b are flavor indices, and a similar
relation holds for the right-handed condensate. This condensate indirectly
breaks chiral symmetry in a qualitatively different way than chiral symmetry
is broken in the vacuum. The spontaneous breaking of chiral symmetry in
vacuum generates a mass through the presence of quark—anti-quark pairs which
modifies the quark propagator. Because of superfluidity, chiral symmetry is
broken again at high density, even though the dynamical masses of the quarks
may remain small.! The spontaneous breaking of chiral symmetry at large
densities creates new Goldstone bosons [44, 45, 46, 47].

The current mass of the strange quark (~ 150 MeV) modifies this picture.
When m?/2u %, A, the mismatch of the strange and non-strange Fermi surfaces
impedes the pairing of strange and non-strange quarks. This leads to the
formation of a two-flavor superconducting (2SC) phase, where up and down
quarks are paired with each other and chiral symmetry is restored. (The
strange quarks, in this phase, may pair among themselves, but the estimated
gaps are on the order of keV, not tens of MeV). If isospin symmetry is explicitly
broken, then there may be a more complicated structure to the phase diagram,
since the us and ds gaps may not vanish at the same point.

IThis is the case in the NJL model of Chapter 5. This is not the most general
possibility, as the superfluid gap may also affect the dynamical mass.
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The quark gaps have a small effect (of order A?/u?) on the equation of state
and the global thermodynamics of the neutron star. This may be understood
in the following way: superfluidity only affects states near the Fermi surface
giving a pressure of order y?A? while without superfluidity, the pressure is an
integral over the entire Fermi sphere and of order pu*. However, quark-matter
superconductivity affects the neutrino opacities in dense matter [48], the sta-
bility of r-modes [49], the specific heat of neutron-star matter, the electrical
conductivity and magnetic properties of matter [50], and the moment of iner-
tia of the neutron star [51]. Because of the color structure of the condensate in
Eq. (1.9), the equation of state must be constructed to ensure that there is no
local color density in neutron star matter. A local color-density would gener-
ate a large color-electric field and matter would reorganize itself to make this
field vanish. In models which do not account for the explicit effects of gluons,
we must enforce color neutrality through an external condition, as detailed in
Chapter 5.

1.3.4 The phase diagram of QCD

The phase diagram of QCD at finite density and temperature is shown
schematically in Figure 1.3. At low densities and temperatures, the ground
state of matter is confined into hadrons. At large temperatures, the ground
state consists of nearly-free quarks and gluons often referred to as the “Quark-
Gluon Plasma” (QGP). The low-density transition from hadronic matter to
the QGP is known through lattice calculations to occur at around 150-200
MeV and is thought to be second order in nature. Deconfined quark matter
is disfavored by the presence of neutrinos and so this temperature rises in the
presence of a neutrino chemical potential. At low temperatures, the transition
between these two phases is altered by the presence of superfluid phases. When
quarks become deconfined, they acquire a gap in their energy spectra. The
low-density quark phase is likely either the CFL phase or the 25C phase. The
details of this picture depend strongly on the strength of pairing interactions,
which is not well understood because of the non-perturbative nature of QCD.
The sensitivity of the phase diagram to the strength of the pairing interactions
is studied in detail in Chapter 5. As the density increases further, the CFL
phase is favored (the strange quark mass becomes much smaller than p) and
persists as g — oo. The order of the transition between the 2SC phase and
the CFL phase is likely to be first order at low temperatures and may become
second order as the temperature increases. The CFL phase also contains more
structure due to different patterns of meson condensation [52], and we ignore
this structure in Figure 1.3 for simplicity. At sufficiently high temperatures,
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Figure 1.3: The phase diagram of QCD in the pup — 7" plane.

the gap between up and down quarks in the 2SC phase melts, and there is
a second order phase transition to the QGP. Neutron stars inhabit the cold

(compared to heavy-ion collisions) and dense region in Figure 1.3 illustrated
by the thick black line.

1.4 Mixed Phase Thermodynamics and
Electro-Weak Interactions

Since the deconfinement phase transition is not sufficiently well understood
to predict its basic thermodynamic properties, we construct a first-order phase
transition from hadronic matter to quark matter by following Gibbs’ phase
rules. A Gibbs construction between phases I and II guarantees that matter
is in mechanical, thermal, and chemical equilibrium, i.e.

P, = Pyy, T; = T, and Mir = Mi1r1, (1-10)

where u; are the chemical potentials corresponding to all conserved charges. In
the lowest-order approximation, one can assume that the Coulomb interactions
with leptons are negligible and treat them as massless degenerate Fermi gases.
Including the Coulomb interactions results, at the lowest order, in heteroge-
neous structures which appear in the mixed phase [53, 54, 55, 56] analogous to
the structures that appear in the phase transition between nuclei and nuclear
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matter mentioned above. The tau leptons are not present because of their
large mass, but all other leptons can contribute.

Weak interactions enforce -equilibrium on a time scale shorter than the
evolutionary time scales mentioned above. The resulting conditions on the
chemical potentials take the form:

i = bipen, — i (10 — fiu,) (1.11)

where b; is the baryon number of particle 7 and ¢; is its charge.

To lowest order, the entropy per baryon and the lepton number of the core
of the neutron star at Stage 2 in Figure 1.1 may be taken to be constant as a
function of density. This is because even as neutrinos are lost from the surface
layers with an attendant loss in its entropy, neutrino absorption and scattering
processes in the core heat up the interior [10, 11, 12, 57]. We will utilize this
approximation in Chapters 2 and 3 to outline the short-term evolution of a
neutron star that permits quark matter in its core. This approximation is
relaxed in Chapter 4 where a full proto-neutron star evolution is performed,
beginning with a composition and temperature profile taken from modern
supernova simulations.

1.5 Effects of Quark Matter on Neutron Star
Structure

A transition to quark matter, like phase transitions to hyperonic or Bose
condensate matter, generally softens the equation of state; it makes the pres-
sure increase more slowly with increasing density compared to the case in
which a phase transition is absent. This typically lowers the maximum mass
and increases the radius and central density of the maximum mass configu-
ration. The decrease in maximum mass associated with the softening of the
equation of state leads to one of the most promising signals for quark matter
in neutron star evolution: metastability [9, 58]. If the neutron star maximum
mass decreases below the mass of the neutron star as a result of the appearance
of a softening component, such as quark matter, the neutron star will collapse
into a black hole in tens of seconds. This has been confirmed in detailed proto-
neutron star evolution calculations for neutron stars with hyperons [12], and
kaon condensates [13]. Chapter 4 gives an account of a similar phenomenon
occurring in neutron stars with quarks in their core in addition to comparisons
with other possible scenarios.
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1.6 Strange Quark Stars

Witten [59] proposed that matter containing strange quarks might be ab-
solutely stable, i.e. the energy per baryon of three flavor quark matter may
be lower than the energy per baryon of ordinary nuclear matter. This leads
to the notion of a self-bound strange quark star which consists almost entirely
of quark matter. The energy density of the strange quark star is approxi-
mately uniform throughout the star which leads to the relation M ~ R3. This
mass- radius behavior is characteristic of strange quark stars and differs con-
siderably from the usual neutron star equation of state in which the radius is
nearly independent of mass for M ~ 1.4 Mg [60].

One of the primary gaps in our present understanding of strange quark
stars is the story of their short-term evolution. The evolution of a strange star
might proceed as follows: (1) A supernova explosion creates a neutron star
with a central density high enough to create deconfined quark matter. (2) In
order to maintain beta-equilibrium, strange quarks are created via the weak
interaction. (3) This strange quark matter, because it is absolutely stable,
causes the nuclear matter near the phase transition to convert to strange quark
matter. (4) This conversion flows out to the stellar surface. The understanding
of the details of how strange quark stars are formed is necessary in order to
validate any conclusions concerning their behavior. In addition, the question
of what happens at the surface of strange quark stars is the subject of recent
investigation. A strange quark matter core remains hot and is unable to cool
through photons because of the large plasma frequency of quark matter. The
long-term evolution is therefore characterized by a slower cooling than a normal
neutron star. However, as explored in Ref. [61], the surface may cool through
pair production at the surface, which is more efficient. Such stars may appear
rather different that “normal” neutron stars because of their non-thermal,
high-energy radiation. Strange quark stars will not be directly addressed here.

1.7 Neutrino Interactions in Quark Matter

In a proto-neutron star, neutrino scattering and absorption dominate the
evolution and cooling. Neutrino cross sections in quark matter are generally
smaller than hadronic matter for two reasons: (i) the vector and axial-vector
coupling constants are nearly equal for quarks and tend to cancel each other
in the matrix element, and (ii) relativistic effects. As discussed in Chapter 2,
since cross sections scale with T2, this effect is magnified by the relatively high
specific heat of quark matter. Constant adiabats of quark matter then have
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lower temperature than those of hadronic matter.

Since the relevant energies in neutron stars are much less than the mass
of the electroweak gauge bosons, neutrino cross sections are well described by
the four-fermion model of electro-weak interactions which is given by

Gr
V2

where V and A are the vector and axial-vector coupling constants for the
process p; + ps — p3 + ps. At lowest order, neutrino cross sections can be
calculated from Fermi’s Golden Rule:

o _ 9 d>py d®ps dp, o
V. 2B / 28, (2m)° / 2B, (27)° / 2, (27)° (M)
fo (L= f3) (1= fa) 2m)* 8" (1 +P2—P3—p4)] ’ (1.13)

These cross sections are calculated in Chapter 3. Here, diffusion coefficients
are used to estimate the effect of quark matter on neutrino transport in proto-
neutron star evolution. Corrections to these results due to strong and electro-
magnetic correlations may be calculated using the techniques of linear response
theory [62].

Quark superfluidity suppresses these cross sections by a factor of order
exp(—A/T). Since temperatures in neutron stars are never larger than 40
MeV, this suppression factor is large. The effects of this suppression and the
effects due to the Goldstone bosons in the CFL phase are studied in Refs. [48,
63, 64].

L= 25 (Up (1= 1)) (V= Ars)i,) + H.C. (112)

1.8 Time and Length Scales

There are several length and time scales relevant to proto-neutron star
evolution which can be easily estimated. The neutrino mean free path in the
center of the neutron star was estimated in Eq. (1.1) to be A, ~ 2 cm. Taking
the velocity of neutrinos to be ¢, gives an average time between collisions of 6 x
10~ s. Using an estimate for the neutron star radius of about 12 km, this gives
the time scale of neutrinos to leave the star (the “deleptonization” time scale)
of gy & R?/(c),) ~ 24 s. Because the time between collisions is so much smaller
than the deleptonization time, the neutrinos can be treated as degenerate. The
cooling time is slightly larger 7. ~ (1 — 2)7, [10], so the star cools only after
the neutrinos leave. For comparison, black hole formation proceeds according

to the free-fall time 7y, ~ \/2GMR/c? ~ 107° s. This is much faster than
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any other time scale and is therefore essentially instantaneous. Because the
time scales for the strong and weak interactions are much smaller than 7y,
neutrinos interact frequently enough that the evolution of the proto-neutron
star is approximately hydrostatic [10, 11, 12, 57].

1.9 Organization

In Chapter 2, the equation of state of neutron-star matter with quarks and
hyperons will be calculated using a mean-field approximation for the hadronic
equation of state and using the NJL model or the bag model for the quark
equation of state [15]. New results for finite temperature with and without
trapped neutrinos are presented and summarized in a phase diagram. Using
this work, the neutrino opacities in neutron-star matter are presented in Chap-
ter 3. The cross sections of neutrino scattering and absorption in neutron-star
matter with quarks including consistently the effects of finite temperature and
in-medium effects of the equation of state from Chapter 2 are given [16]. The
goal here is the calculation of appropriate diffusion coefficients, a necessary
ingredient for proto-neutron star evolution calculations. The evolution calcu-
lation is summarized in Chapter 4 which simulates the first minute of a neutron
star with quark matter [14]. The neutrino signal from a proto-neutron star is
calculated, along with the expected detector response assuming that a galac-
tic supernova is detected with SNO, SuperK, or the proposed detector, UNO.
This is the first calculation of metastability times for neutron stars containing
quarks and allows comparison to metastability times for other softening com-
ponents. In Chapter 5, the effects of quark superfluidity will be considered [65].
This chapter presents the first calculation of the phase structure of neutron
star matter at finite temperature and neutrino chemical potential which con-
sistently treats the diquark interaction to all orders in the strange quark mass
and enforces color neutrality. The gaps and dynamical masses are computed
as a function of density, and the CFL and 2SC phases are compared in or-
der to construct a phase diagram of quark matter relevant for proto-neutron
stars. Chapter 6 contains conclusions, discussion, and outlook. The work in
Chapter 4 was chosen to be a Physical Review Focus article in June 2001 and
this article is reproduced in the Epilogue. Appendix A contains a sketch of the
derivation of the mean-field approximation to the thermodynamic potential for
the hadronic EOS used in Chapter 2, Appendix B presents a detailed discus-
sion of neutrino-quark scattering and some useful integrals used in Chapter 3,
and Appendix C gives the derivation of the thermodynamic potential in the
mean-field approximation used in Chapter 5.
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Chapter 2

Quark-Hadron Phase Transitions in
Young and Old Neutron Stars

In this chapter, we analyze the structure of young and old neutron stars
that contain quarks and indicate what effect quarks might make on observa-
tions, in particular, observations of neutrino emissions. When a neutron star
is born, the neutrinos produced by electron capture in the beta-equilibrated
matter are prevented by their short mean free paths from leaving the star on
dynamical timescales. The number of leptons per baryon that remain trapped
is approximately 0.4, the precise value depending on the efficiency of electron
capture reactions during the gravitational collapse of the progenitor star. On
a timescale of 10-20 seconds, the neutrinos diffuse from the star, but leave
behind much of their energy which causes significant heating of the ambient
matter [11, 57]. Entropies per baryon of about 2 (in units of the Boltzmann
constant kg), and temperatures in the range 30-50 MeV, can generally be
achieved in the inner 50% of the star’s core. This is to be compared to core
entropies of approximately 1 which exist in the initial configuration. Follow-
ing the heating, the star cools by radiating neutrino pairs of all flavors, and
temperatures fall to below 1 MeV within minutes. Recent calculations [12, 66]
have verified this general scenario for a variety of equations of state (EOS) and
assumptions about the composition of high-density matter.

Compared to cold neutron stars, the appearance of quarks is suppressed in a
proto-neutron star (PNS) because of its high lepton number content [9]. As the
neutrinos leak out of a PNS, however, the central density of the star increases
and the threshold density for the appearance of quarks decreases. Previous
studies [9] have shown that the maximum mass supported by neutrino-rich
matter is larger than that supported by neutrinoless matter if quarks appear.
This gives rise to the possibility that some PNSs might become metastable [10,
58, 67], which would occur if the PNS mass lies within this range of maximum
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masses. When the maximum mass decreases below the PNS mass, after most
of the neutrinos have diffused from the star, a collapse to a black hole ensues.

The new features of our study are to 1) include both the effects of trapped
neutrinos and finite temperature, 2) examine the role of the quark model by
employing both the traditional MIT bag model and the Nambu—Jona-Lasinio
(NJL) quark Lagrangian, 3) explore the effects of stiffness of the hadronic
interactions on the quark-hadron transition, 4) study the effect of hyperons,
and 5) delineate the phase diagram in the lepton number—baryon number
density plane, appropriate for PNS studies.

2.1 Thermodynamics

2.1.1 Hadronic phase

To model the hadronic phase, we use a field-theoretical description, in
which baryons interact via the exchange of o-, w-, and p- mesons, extended
to include hyperons. Specifically, we follow the approach of Miiller and
Serot [32] (hereafter MS). For densities lower than 0.08 fm~3, we use the zero-
temperature EOS of Negele and Vautherin [21], and for densities lower than
0.001 fm~3 we use the Baym-Pethick-Sutherland zero-temperature EOS [25].
Since the maximum mass and central densities of neutron stars depend only
marginally on the low-density EOS, the assumption of zero-temperature for
this low-density matter is satisfactory. The MS Lagrangian is

L = Y B(in"0 — gupV'wu — 9p87"bu -t — Mp + gop0 — pipY0) B
B

1 1 K A
— §m§02 -+ 58,10'8”0' — 50’3 — 50'4
+ 1me”w — 1F F’“’+£ 4 (whw,)?
oM nT gt 4!9w "
1 1
+ 5mb'b, — 1B BY + %9;1 (b*by)* + Lo, (2.1)

where the sum over B is a sum over all nucleons and hyperons, and L, repre-
sents the sum of the Dirac Lagrangians for all of the leptons (electrons, muons
and neutrinos). The values of k, A, g,n, gon, and g,y are set by matching
the equilibrium nuclear density (ng = 0.16 fm?), binding energy (E, = —16
MeV), compressibility (Ko = 250 MeV), nucleon effective mass (M = 0.6M),
and symmetry energy (€sy, = 35 MeV) at ng. The remaining two parameters,
¢ and (, associated with non-linear vector and isovector interactions, control
the stiffness of the hadronic EOS at supernuclear densities. Larger values of
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either parameter tend to soften the EOS. The acceptable ranges for ¢ and &,
based on considerations of naturalness, are 0 < ¢ < 1.5 and 0 < ¢ < 0.06 [32].

We include the A, ¥, % ¥~, 2% and =~ hyperons and ignore the heavier
A baryon which is too massive to affect our results. We assume that all six
hyperon coupling constants with a particular vector meson are equal. Further-
more, the hyperon coupling constants are related to the nucleon—vector meson
coupling constants by

9oH = Lo YoN 9pH = Tp YpN ; YuH = Loy Gun - (22)

Following Glendenning and Moszkowski [68] we assume z, = z, = 0.8. We
also take z, = 0.895, which follows from the binding energy, —28 MeV, of the
A hyperon in nuclei [69].

The mean field thermodynamical potential corresponding to the La-
grangian in Eq. (2.1) is given in Appendix A.

2.1.2 Quark phase

The thermodynamic potential of the quark phase is 2 = Qpg 4+ Qn, Where

Qpg d®p _

S = aNT _% / o (01— ;) +In (1 - f)] (2.3)
denotes the Fermi gas contribution arising from quarks. We consider three
flavors, © = u,d,s and three colors, N, = 3, of quarks. The distribution
functions of fermions and anti-fermions are f; = [1 + exp(8(E; — ;)] and
fi = [1 +exp(B(E; + p3))]7%, where E; and p; are the single particle energy
and chemical potential, respectively, of quark of species 7. To explore the
sensitivity of the quark model, we contrast the results of the MIT bag and the
Nambu-Jona-Lasinio (henceforth NJL) models for Qpy.

In the MIT bag model, the Fermi gas contribution is calculated using cur-
rent, as opposed to dynamical, quark masses. We will restrict ourselves to
the simplest bag model and keep only the constant cavity pressure term. The
results are qualitatively similar to what is obtained by including perturbative
corrections, if the bag constant B is slightly altered [70].

Several features of the Lagrangian of Quantum Chromo-Dynamics (QCD),
including the spontaneous breakdown of chiral symmetry, are exhibited by the
Nambu-Jona-Lasinio (NJL) model, which shares many symmetries with QCD.
In its commonly used form, the NJL. Lagrangian reads

L = q(if —mo)g + G Zi:[(q/\kq)Q + (qivs\eg)? ]
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— K [dets(q(1+475)q) + dets(q(1 —75)q) ] - (2.4)

The quark fields for the up, down, and strange quarks are denoted by the spinor
g which is an SU(3) vector. The determinant operates over flavor space, g
is the 3 x 3 diagonal current quark mass matrix, A\; represents the 8 genera-
tors of SU(3), and A is proportional to the identity matrix. The four-fermion
interactions stem from the original formulation of this model [71], while the fla-
vor mixing, determinantal interaction is added to break U4 (1) symmetry [38].
Since the coupling constants G and K are dimensionful, the quantum theory is
non-renormalizable. Therefore, an ultraviolet cutoff A is imposed, and results
are considered meaningful only if the quark Fermi momenta are well below this
cutoff. The coupling constants G' and K, the strange quark mass m, and the
three-momentum ultraviolet cutoff parameter A, are fixed by fitting the exper-
imental values of fr, m,, mg, and m,;. We use the values of Ref. [72], namely
A = 602.3 MeV, GA? = 1.835, KA® = 12.36, and my s = 140.7 MeV, ob-
tained using mg, = moq = 5.5 MeV. The subscript “0” denotes current quark
masses. Results of the gross properties of PNSs obtained by the alternative
parameter sets of Refs. [73] and [39] are similar to the results quoted below.
The effects of quark superconductivity in the NJL model will be investigated
in Chapter 5.

The vector interactions inherent in the NJL model become evident upon
a Fierz transformation of the four-fermion interaction. The strength of these
four fermion interactions can be varied as an additional parameter [74]. An
increase in the strength of the vector interactions tends to soften the equation
of state [75]. Because the contribution to the meson masses from the vector
interactions is significantly smaller than that of the original four-fermion inter-
action [76], the parameters above are often assumed to not change significantly
when varying the vector interactions.

In the mean field approximation at finite temperature and at finite baryon
density, the thermodynamic potential due to interactions among quarks is
given by [39]:

ant d3p
o= N Y /(2?<\/mf+p2—\/m§’i+p2)

i=u,d,s

+ 2G{(Gi¢:)* — AK(quu){Taqa){Ts4s) - (2.5)

The derivation of €y, is contained within the results for the thermodynamic
potential of superconducting quark matter presented in Eq. (5.5) and derived
in Appendix C. In both Egs. (2.3) and (2.5) for the NJL model, the quark
masses are dynamically generated as solutions of the gap equation obtained
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by requiring that the potential be stationary with respect to variations in the
quark condensate (g;g;):

m; = mo,; — 4G(Giqi) + 2K (G;9;)(Tkqx) (2.6)

(¢, ;, qx) representing any permutation of (u,d,s). The quark condensate
(g;¢:) and the quark number density n; = {g/¢;) are given by:

_ d3 m; =
(Gai) = _2Nc/ #E [1 —fi— fi]
d®p -
ni = (afq:) = QNC/W [fi = 1] (2.7)

A comparison between the MIT bag and NJL. models is facilitated by defin-
ing an effective bag pressure in the NJL model to be [77] Bess = Qine/V — By
with BoV = Qint|ny=ny=n,—0 & constant value which makes the vacuum en-
ergy density zero. In this way, the thermodynamic potential can be ex-
pressed as 2 = B¢V + Qpg which is to be compared to the MIT bag result
2 = BV +Qpg. Note, however, that {2r¢ in the NJL model is calculated using
the dynamical quark masses from Eq. (2.6).

2.1.3 Proto-neutron star matter

Both PNS and neutron star matter are in beta equilibrium, which together
with charge conservation implies

/,Le - /111/5 - /'IJ/J - ljillu 7 /j’B = b’tlj"n - QZlu’e + q’ilj’l/e ) (28)

where b; and ¢; are the baryon number and charge, respectively, of the hadron
or quark species 7. The initial PNS contains trapped neutrinos, so the electron
and muon lepton numbers may be assumed fixed: Y. = (n. + n,.)/ng =
0.4 and Yz, = (n, +ny,)/ng = 0. We consider three approximate entropies
per baryon and lepton concentrations to represent the thermodynamic condi-
tions in an evolving PNS: the initial state (s = 1,Y,, = 0.4), the maximally
heated star (s = 2,Y,, = 0), and the cold, catalyzed star (s =0,Y,, = 0). Of
course, treating the PNS as a monolithic structure of fixed entropy and compo-
sition is an oversimplification, and full evolutionary calculations are required
to confirm these estimates.

Quarks are assumed to appear by forming a mixed phase with the hadrons
satisfying Gibbs’ rules for phase equilibrium [53]. Matter in this mixed phase

23



is in thermal, mechanical and chemical equilibrium, so that

T = T, = and
P' = Py =2pa+ (2.9)

where I and II denote the hadronic and quark phases, respectively. The
restriction that the pure phases I and I/ are independently charge neutral is
replaced by the condition of global charge neutrality [53]

!+ (1 —x)niT =0, (2.10)

where n, is the charge density and x is the volume fraction of the hadronic
phase. The energy and entropy densities in the mixed phase can be expressed
in terms of the corresponding quantities in the hadronic and quark phases.
We ignore surface and Coulomb effects for the structure in the mixed phase
so the leptons are everywhere free Fermi gases.

2.2 Results

The EOS for matter with hadrons is constructed with the MS model, and
we considered models both with and without hyperons. In addition, we con-
sidered models incorporating a range of parameters ( and £&. Two quark La-
grangians were selected, the NJL model with parameters given by [72] and the
MIT bag model with 150 < B/(MeV fm~?)< 250. The main effects of increas-
ing ¢ and & are to decrease the maximum mass and radius, but to increase the
extent of the mixed phase. However, the choice ( = £ = 0 maximizes the quark
content of matter at a given density, since the hadronic EOS is stiffest for this
case. This is illustrated in the left panels of Figure 2.1, which shows the hadron
volume fraction y as a function of density for three representative hadronic
parameter sets (neglecting hyperons) for cold matter without neutrinos. The
NJL (MIT) quark model is shown in the upper (lower) panel. However, for a
given stellar mass, the quark content of a neutron star is actually maximized
for the softest parameter set ( = 0.06,& = 1.5, as shown in the right panels of
Figure 2.1. This counterintuitive behavior occurs because the central densities
achieved for a given stellar mass are greater for a softer EOS. Note that the
maximum mass decreases with increasing softness of the hadronic EOS, which
is as expected.

A more intuitive behavior results from variations in the parameters of the
quark Lagrangian. The parameters of the NJL model are relatively tightly
constrained by meson properties in vacuum. However, the MIT bag model
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Figure 2.1: Left panels: The volume fraction of hadrons as a function of density
in units of ny within the quark-hadron mixed phase for cold, catalyzed matter
(s =0,Y,, = 0) without hyperons (npQ). Three choices for the parameters
¢ and & in the Miiller-Serot (MS) hadronic Lagrangian are illustrated, and
the upper panel refers to the Nambu-Jona-Lasinio (NJL) model and the lower
panel to the MIT bag model with B = 200 MeV fm~3. The short vertical lines
denote the central densities of the maximum mass configuration. The center
of the 1.4 Mg star is always in a pure hadronic phase. Right panels: The
volume fraction of hadrons in the star’s center as a function of stellar mass for
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parameter B is only constrained by the requirement that the quark-hadron
transition not occur too close to ng, which implies that B is larger than about
125-150 MeV fm~3. Smaller values for B result in a larger quark content at
a given density, a larger quark content for a given stellar mass, and a smaller
maximum mass. There is little qualitative change produced by including hy-
perons.

In the remainder of this chapter, we choose ( = & = 0 for the hadronic
parameters and B = 200 MeV fm 2 for the MIT bag constant. We shall
consider in detail four EOSs: hadrons with and without hyperons for the
NJL and MIT quark models. The mixed phase of quarks and hadrons can
exist in neutron stars at least in the range of 1.2-2 My, depending on the
model. Ref. [78] concluded that the mixed phase is unlikely to exist in neutron
stars with masses around 1.4 Mg neutron stars, using the NJL Lagrangian.
However, this result appears to be dependent upon the hadronic interactions.

The pressure of matter as a function of the density in units of ng, u =
ng/ng, is shown in Figure 2.2 for these four cases. The mixed phase, indicated
by thick lines, is marked by a pronounced softening of the EOS, observable as
a large decrease in the incompressibility P/0dn of matter. The introduction
of hyperons, or a large trapped neutrino fraction, suppresses the appearance
of quarks for both quark models. The reason for this is that the additional
contribution to the pressure from the neutrinos or the hyperons is more than
canceled by the addition of a degree of freedom to the system. A decrease in
the pressure of the hadronic EOS forces the mixed phase to higher densities,
because the hadronic pressure is not sufficient to match that of the quark
phase until a higher density. Large amounts of trapped neutrinos produce a
pronounced net increase in the pressure, however, because the (EOS-softening)
transition is shifted to higher densities in all cases.

It is worth noting that the increase in pressure normally observed for finite-
temperature matter compared to zero-temperature matter [10, 12| is reversed
in the mixed phase produced by quarks. This reversal, which does not occur
for a mixed phase with kaon condensation [13], originates in the fact that
the phase transition begins at a lower density at finite temperature, so that
the EOS softens at an earlier density. Even a small change in the threshold
density of appearance for the mixed phase results in a significant net decrease
of pressure at a fixed density.

The temperature as a function of baryon density for fixed entropy and
net lepton concentration is presented in Figure 2.3, which compares the cases
(s =1,Y;, = 0.4) and (s = 2,Y,, = 0) both including and ignoring quarks.
The temperature for a multicomponent system in a pure phase can be analyzed
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Figure 2.2: Pressure versus density in units of ng for three representative
snapshots during the evolution of a proto-neutron star. The top (bottom)
panels display results without (with) hyperons, and the left (right) panels
utilize the NJL (MIT bag) quark EOS. The parameters { = & = 0 in the
Miiller-Serot (MS) hadronic Lagrangian are chosen. Bold curves indicate the
mixed phase region. The long vertical lines indicate the central densities of
a 1.4 Mg star and the short vertical lines indicate the central density of the
maximum mass star.
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with the relation for degenerate Fermi particles

78 (Z p%,i+(mf)2) ’

7 (2 o, (2.11)
where m} and pg, are the effective mass and the Fermi momentum of compo-
nent 7, respectively. This formula is quite accurate since the hadron and quark
Fermi energies are large compared to the temperature. The introduction of hy-
perons or quarks lowers the Fermi energies of the nucleons and simultaneously
increases the specific heat of the matter, simply because there are more com-
ponents. In the case of quarks, a further increase, which is just as significant,
occurs due to the fact that quarks are rather more relativistic than hadrons.
The combined effects for quarks are so large that, in the case Mj = 0.6M
shown in Figure 2.3, an actual reduction of temperature with increasing den-
sity occurs along an adiabat. The effect is not necessarily as dramatic for other
choices of M{, but nevertheless indicates that the temperature will be smaller
in a PNS containing quarks than in stars without quarks. The large reduction
in temperature might also influence neutrino opacities, which are generally
proportional to 7?. However, the presence of droplet-like structures in the
mixed phase, not considered here, will modify the specific heat. In addition,
these structures may dominate the opacity in the mixed phase [55]. However,
a PNS simulation is necessary to consistently evaluate the thermal evolution,
since the smaller pressure of quark-containing matter would tend to increase
the star’s density and would oppose this effect.

The particle concentrations as functions of density are displayed in Fig-
ures 2.4 and 2.5 for the four EOSs considered here. The major difference
that the choice of quark models produces concerns the concentration of the
strange quark. The strange quark (dynamical) mass in the NJL model is much
larger, by a factor of 2 to 3, than that assumed in the MIT bag model. This
noticeably reduces its chemical potential, and hence its concentration, in the
NJL model. The inclusion of hyperons does not produce significant changes
to the nucleon or electron concentrations, although the electron concentration
begins to fall at the threshold density for the appearance of hyperons which
is lower than the low-density boundary of the mixed phase region. The muon
concentration is generally much smaller than that of the electron and is omit-
ted from the figures for the sake of clarity. By moving the mixed phase region
to higher densities, the inclusion of hyperons, somewhat reduces the width of
the mixed phase region. This is not apparent in the figures for the MIT bag
case, however, because the mixed phase extends to rather large densities.

The mass-radius trajectories, computed from the standard relativistic stel-
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Figure 2.3: Temperature versus density in units of ng for two PNS evolutionary
snapshots. The upper (lower) panel displays results for the NJL (MIT bag)
Lagrangian. The parameters ( = & = 0 in the Miiller-Serot, (MS) hadronic
Lagrangian are chosen. Results are compared for matter containing only nu-
cleons (np), nucleons plus hyperons (npH), nucleons plus quarks (npQ) and
nucleons, hyperons and quarks (npHQ). Bold curves indicate the mixed phase
region.
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Figure 2.4: The concentrations of hadrons, quarks, and leptons as functions of
density in units of ny. Three representative snapshots during the evolution of
a proto-neutron star are displayed. Matter is assumed to contain nucleons and
quarks (npQ). The parameters ¢ = & = 0 in the Miiller-Serot (MS) hadronic
Lagrangian are chosen. Bold curves indicate the mixed phase region.
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lar structure equations, are displayed in Figure 2.6 for the four EOSs and for
the set of three thermodynamic conditions. Configurations in which the center
of the star is in the mixed phase region are shown as bold lines. Although the
results displayed are for a single parameterization of the hadronic matter, it
is clear that neutron stars containing a mixed phase have a moderate range of
masses. This range could be enhanced by altering either the hadronic or the
quark matter EOS. The range of masses of stars containing a mixed phase ap-
pears to be diminished in the case that hyperons exist, as noted in Refs. [9, 78],
but this result is somewhat dependent upon the hyperon coupling constants
in addition to the hadronic and quark matter EOSs.

Coinciding with the result in Figure 2.2 that the quark-hadron transition
at finite temperature occurs at a lower density than at zero temperature, and
thereby reduces the pressure in the mixed-phase region, the neutrino-free stars
with s = 2 have smaller maximum masses than those for cold s = 0 stars.
Nevertheless, the pressure in the range ng < n < 1.5ng increases with entropy.
This increase in pressure results in larger stellar radii for stars below the max-
imum mass. The difference of pressures between the (s = 0,Y7, = 0.4) and
(s =1,Y,, = 0) cases is much smaller, and produces relatively less of a radius
change.

It is immediately apparent that in all cases shown, a range of masses are me-
tastable, a condition which exists if the initial PNS configuration has a greater
maximum mass than the final configuration [9]. This result was foreshadowed
by the results presented in Figure 2.2, in which the pressure for the lepton-
rich configuration was much larger in the mixed phase than for the other
configurations. In addition, as the neutrinos diffuse from the star, the mixed
phase shifts to lower densities and so a greater proportion of the center of the
star is in the mixed phase. In the cases shown, the maximum mass occurs
when the star’s central density is in the mixed phase region.

This last point is highlighted in Figure 2.7 which shows phase diagrams
for the mixed phase in the baryon density-neutrino fraction plane. The upper
and lower boundaries of the mixed phase region are displayed as bold lines,
while the central densities of the maximum mass configurations are shown
as light lines. The high-density phase boundaries are always well above the
central densities. While in the optimum case, in which the parameters of
both the hadronic and quark EOSs are fine-tuned, it is possible for a pure
quark core to form if B < 150 MeV fm™3, the maximum mass decreases
below 1.44 Mg if B < 145 MeV fm™3. This narrow window, which further
decreases or disappears completely if the hadronic EOS is altered, suggests
that configurations with pure quark cores may be unlikely. Strange quark
stars, in which the pressure of quark matter vanishes at non-zero density,
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Figure 2.6: The gravitational mass versus radius, for three representative snap-
shots during the PNS evolution. The left (right) panels are for the NJL (MIT
bag) quark EOS, and hyperons are (are not) included in the bottom (top) pan-
els. The parameters ( = £ = 0 in the Miiller-Serot (MS) hadronic Lagrangian
are chosen. Bold lines indicate configurations with a mixed phase at the star’s
center.
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unless the bag constant is very small.

By allowing the parameters of our hadronic EOS to vary within their ex-
perimental uncertainties (as for example, using K = 300 MeV, E,,,, = 30
MeV, and ny = 0.153 fm=2 and lowering the bag constant to 150 MeV /fm?),
it is possible to construct a neutron star with a pure quark core. In this case,
a maximum mass of 1.46 My is obtained. Pure quark cores result only upon
fine-tuning the parameters, and inevitably lead to small maximum masses.
Given the constraint that any EOS must be able to support at least 1.44 Mg,
the most accurately measured of the neutron star masses, we conclude that it
is unlikely for neutron stars to contain a pure quark core.

2.3 Discussion

In summary, it is possible for a mixed phase to exist in a neutron star
of virtually any mass above 1.4 M. Depending upon the EOSs, a mixed
phase is more likely to exist in stars larger than 1.5 Mg. The precise stellar
mass above which a mixed phase containing quarks might exist depends on
the “softness” of the hadronic EOS and the effective bag pressure of the quark
model. Although the quark content of matter at a given density is maximized
for stiffer hadronic equations of state, the extent of the mixed phase region
in a neutron star of a given mass is maximized for softer hadronic EOSs. We
have shown that only in extreme cases could result in star with a pure quark
core.

The mixed phase is delayed until most neutrinos have diffused from the
star, leading to the possible metastability of PNSs, a robust result which de-
pends only on the existence of quarks in dense matter. Finite temperature
permits the quark-hadron transition to occur at slightly lower densities than
at zero temperature, but in a newly-formed PNS this effect is swamped by
the large trapped neutrino fraction which has the opposite tendency. Further-
more, 0T'/0n < 0 along adiabats in the quark-hadron mixed phase, a behavior
opposite to that generally found in a mixed phase region containing a kaon
condensate. This implies that core temperatures may be significantly lower in
stars containing quarks than in those not containing quarks. Neutrino opaci-
ties, which are sensitive to temperature, will be affected, but the implications
for the emitted neutrino fluxes and temperatures can only be reliably evaluated
in the context of a full PNS simulation.
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Figure 2.7: The phase diagram of the quark-hadron transition in the baryon
number density - neutrino concentration plane for three representative snap-
shots during the evolution of a proto-neutron star. The left (right) panels
are for the NJL (MIT bag) quark EOS, and hyperons are (are not) included
in the bottom (top) panels. The parameters ( = £ = 0 in the Miiller-Serot
(MS) hadronic Lagrangian are chosen. The lower- and upper-density bound-
aries of the mixed phase are indicated by bold curves. The central densities of
maximum mass configurations are shown by thin curves.
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Chapter 3

Diffusion of Neutrinos in Proto-Neutron
Star Matter with Quarks

A general picture of the early evolution of a proto—neutron star (PNS) is
becoming well established [10, 11, 12, 66, 79, 80]. Neutrinos are produced in
large quantities by electron capture as the progenitor star collapses, but most
are temporarily prevented from escaping because their mean free paths are
considerably smaller than the radius of the star. During this trapped-neutrino
era, the entropy per baryon s is about 1 through most of the star and the total
number of leptons per baryon Y, = Y, + Y,, ~ 0.4. The neutrinos trapped
in the core strongly inhibit the appearance of exotic matter, whether in the
form of hyperons, a Bose (pion or kaon) condensate or quarks, due to the
large values of the electron chemical potential. As the star cools, the neutrino
mean free path increases, and the neutrinos eventually leak out of the star,
on a timescale of 20-60 s. During deleptonization, neutrino diffusion heats the
matter to an approximately uniform entropy per baryon of 2. If the strongly
interacting components consist only of nucleons, the maximum supportable
mass increases. In the case that hyperons, a Bose condensate (pion, kaon) or
quarks appear in the core as the neutrinos leave, the maximum mass decreases
with decreasing leptonic content. Neutron stars which have masses above the
maximum mass for completely deleptonized matter are thus metastable, and
will collapse into a black hole during deleptonization. Alternatively, if the
mass of the neutron star is sufficiently small, the star remains stable and cools
within a minute or so to temperatures below 1 MeV as the neutrinos continue
to carry energy away from the star.

The way in which this picture is modified when the core of a PNS contains
deconfined quark matter is only beginning to be investigated [9, 10, 15, 48].
In his seminal paper, Iwamoto [81] noted that the non-degenerate v mean free
path in cold quark matter is about ten times larger than in nucleonic mat-
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ter. We find that in PNS matter, in which quarks appear towards the end
of deleptonization, similarly large enhancements persist even up to the largest
relevant temperatures (~ 30—40 MeV [15]), inasmuch as quarks remain largely
degenerate. On this basis, it can be anticipated that the presence of quark
matter increases the neutrino fluxes while simultaneously decreasing the delep-
tonization time, relative to matter without quarks. In Chapter 4, we explore
the possibility that such a change might be detected from a Galactic super-
nova in current and planned neutrino detectors. This has direct implications
for the theoretical understanding of the high-density regime of QCD which is
inaccessible to high energy Relativistic Heavy-lon Collider experiments, and,
currently, to lattice QCD calculations at finite baryon density.

To perform detailed simulations of the neutrino signal from a PNS con-
taining quark matter, as has already been done for matter containing nu-
cleons, hyperons and/or a kaon condensate [10, 11, 12, 66, 79, 80], consis-
tent calculations of neutrino interactions in hot lepton-rich matter containing
quarks are required. It is most likely that quarks exist in a mixed phase with
hadrons [9, 15, 53]. Chapter 2 demonstrated that the temperature of an adia-
bat decreases as a function of density in a mixed phase of quarks and nucleons.
Because v—cross sections usually scale with T2, this suggests that the presence
of quark matter might influence the neutrino signal of a PNS with quarks. The
effects of color superfluidity will be addressed here in Chapter 6.

In this chapter, we calculate the diffusion coefficients of neutrinos in a
mixed phase of hadrons and quarks for the temperatures, neutrino degenera-
cies, and lepton contents likely to be encountered in the evolution of a PNS
with quarks. We demonstrate that the cross sections for scattering and ab-
sorption of neutrinos by nucleons, leptons, and quarks are reduced to two
integrals, whose integrands are products of simple polynomials and thermal
distribution functions. The limiting behaviors of the cross sections, for non-
degenerate and degenerate neutrinos, respectively, are compared with previous
calculations [81] in the case of pure quark matter. For simulations of PNS
evolution using the diffusion approximation, diffusion coefficients, which are
energy weighted averages of neutrino cross sections, are required for matter in
which quarks exist in a mixed phase with hadrons. We examine the relevant
diffusion coefficients for two thermodynamic conditions especially germane to
PNS evolution. The first situation is when neutrinos are trapped, s = 1, and
the total lepton content of the matter Y7, = Y, +Y,, (which measures the con-
centrations of the leptons per baryon) is approximately 0.4. We also consider
the situation when neutrinos have mostly left the star and the matter has been
diffusively heated (Y, ~ 0,s & 2). We discuss the impact these results might
have upon the evolution of a PNS which contains quarks in a mixed phase.
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3.1 Theory

3.1.1 Standard model cross sections

For the v—energies of interest, the neutral and charged current
v—interactions with the matter in a PNS are well described by a current-
current Lagrangian [82]

L= % (2, (1) (1 = 7508, (3)) (G, (2)(V = Ays),(4)) + HLC.,  (3.1)

where )V and A are the vector and axial-vector coupling constants (See Table 1)
and Gp ~ 1.17 GeV 2 is the Fermi weak coupling constant. The subscripts
1 =1,2,3, and 4 on the four-momenta p; denote the incoming neutrino, the
incoming lepton, baryon or quark, the outgoing neutrino (or electron), and the
outgoing lepton, baryon or quark, respectively. The charged current reactions
contribute to absorption of neutrinos by baryons or quarks and scattering of
neutrinos with leptons of the same generation. The neutral current interac-
tions contribute to scattering of neutrinos with leptons and baryons or quarks.
The charged current contribution to neutrino-lepton scattering in the same
generation can be transformed into the neutral current form, which modifies
the constants V and A for that case. For completeness, the values of V and A
for electron neutrinos are given in Table 1. The corresponding values for reac-
tions with electron anti-neutrinos are obtained by the replacement A — —A.

From Fermi’s golden rule, the cross section per unit volume (or inverse
mean free path) is

o _ d*py [ dPps [ dps . B B
V - g/ (271')3 / (271')3 / (271')3 [WfoQ (1 f3) (1 f4)
(2m)* 6" (p1 + p2 — ps — p4)] ; (3.2)

where the degeneracy factor g is 6 (3 colors x 2 spins) for reactions involving
quarks while it is 2 (2 spins) for baryons of a single species. The Fermi-
-1
Dirac distribution functions are denoted by f; = [1 + exp (%)] , Where
E; and p; are the energy and chemical potential of particle . The transition
probability Wy;, summed over the initial states and averaged over the final
states, is
[V A (1 p2) (22 p1) + V= A (51 1) - )
FLE,EEs 1°D2)(P3 - P4 1°P4)(P3 - P2

- (V2 - AQ) (Pl 'ps) (p4 'pz)] . (3-3)

Wy =
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1+2—>3+14 V A
Vet+ =~ — v, +e 1 1
Charged vi+n—10 +p s cosfc g4 cosfc
current v+d—=10"+u cosO¢c cos O¢
y+s—=1"4+u sin O sin O
Vete —vete  :+2sin’by 1
Vet it —Ve+p  —3+2sin’ by !
Ve+n —Ve+n _% —%gA
Neutral ve+p—=v.+p 1+ 2sin® Oy 1ga
current Ve+ U — Ve +u 12— Ssin’ Oy :
Vet+d—v,+d 5+ 2sin” Oy -1
Vet 8= Vet 8 1+ 2sin’ Oy —3

Table 3.1: The standard model charged and neutral current vector and axial-
vector couplings of neutrinos to leptons, baryons, and quarks; 6 is the Cab-
bibo angle (cosfc = 0.973), Oy is the weak mixing angle (sinfy = 0.231),
and g4 = 1.23 is the baryon axial-vector coupling constant.
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Utilizing d®p; = p? dp;dQ; = p;E; dE;dS); and integrating over Ej, Eq. (3.2)
may be cast in the form

v = ng;s /M2 dE?/ dEs S %‘ﬁz“ﬁzx\ [(V+A)21 +
V=5 + (V= L) 1] (3.4)

where S = fo (1 — f3) (1 — f4), M; is the mass of particle 7, and

I, = /dQ2dQ3dQ4 8% (p1 +p2 — p3 — pa) (p1 - p2) (P3 - pa) . (3.5)

The integrals I, and I, are defined similarly to I, and are given in Appendix
B. Explicitly,

71.2

Ia = M[E} (Priax_Prfnn) 0(A+B) (Pr:flax Pr?nn)
60AB (Prax — Pain)] , (3.6)

where

2A = 2E\Ey+p? +pl, 2B =2E;E,+p)+pi,
Prnin = max(|p1 — p2|,[p3 — pa]), Pmax = min (p1 + pa, p3 + ps) - (3.7)

In the above expression, p; = p;. I, and I, are defined to be the same as I,
but with appropriate replacements:

Iy = I,(p2 ¢ pa, By <+ —Ey) , I. = 1,(p2 <+ p3, By < E3). (3.8)

In Egs. (3.7) and (3.8), Es = Ey+ Ey— Es and || = /(Ey + E» — Es)? — M2
Egs. (3.4) through (3.8) are the principal results of this chapter and enable
us to compute, for arbitrary conditions of neutrino degeneracy and matter’s
temperature, the neutrino diffusion coefficients required in simulations of PNSs
containing quark matter. We note that similar techniques were employed to
calculate v—emissivities in cold catalyzed neutron stars in Refs. [83, 84].

In limiting cases when the neutrinos are either degenerate or non-
degenerate, and the quarks, which are always degenerate in PNSs, are massless,
simple analytical expressions for the cross section may be obtained by replac-
ing momenta by Fermi momenta and energies by chemical potentials in the
integrals I,, I, and I.. For the sake of comparing such limits with the gen-
eral results obtained from Eq. (3.4), we record various limiting forms obtained
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earlier in Refs. [81, 85]. In the case of neutrino scattering, explicit derivations
and further extensions of these results are given in Appendix B.

(1) Scattering of degenerate neutrinos: The result is the same as for neutrino-
electron scattering:

o5 Ghi x_El)”QX

vV  5m8 [(E1 —m)” +7T2T2] ( H2
[(V?+.A4%) (10+2%) +5(2VA) 2] (3.9)

where = min(Ey, 19)/max(Ey, o). Here, and in the following, we have re-

-1
moved the factor 1—f; = (1 + e_(El_’“)/T) from [81, 85] to obtain transport,
mean free paths.

(2) Scattering of non-degenerate neutrinos: The inverse scattering mean free
path is

os _ GREY U3

= 3.10
V 53 (3.10)
when it is additionally assumed that s is large compared to Ej.
(3) Absorption of degenerate neutrinos:
O A 2G2 /,113 2
= 5W3FM%3 (10423 + Bpapss + 413) [(Br — mn)* + 7°T7] . (3.11)

(4) Absorption of non-degenerate neutrinos: The general result is greatly sim-
plified by additionally assuming that the quark chemical potentials are modi-
fied by perturbative gluon exchange:

UVA = %acG%szpF?’pF‘l [Ef + 7T2T2] . (3.12)
Representative cross sections from Eq. (3.4) are compared with the limit-
ing forms in Egs. (3.9)—(3.12) in Fig. 3.1. Degenerate neutrinos are assumed
in this figure to have p, > T and non-degenerate neutrinos are assumed to
have p, =~ 0. In the regions where they were expected to be valid, namely
E,/T > 1 for degenerate absorption and scattering, and also non-degenerate
scattering, and F, =~ T for non-degenerate absorption, the limiting forms give
adequate representations of the general results. However, significant deviations
occur in the cases of non-degenerate absorption when E, # T', and for degen-
erate absorption and non-degenerate scattering when F,, < T. The deviation
for non-degenerate absorption is due to the neglect of p, in the momentum
conservation condition in Eq. (3.2) in Ref. [81] (which is appropriate for cold
catalyzed stars, but not for hot matter in PNSs), which limits its applicabil-
ity to the region E, =~ T. The other two deviations are simply due to the
assumption in Ref. [81] that E, > T.
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Figure 3.1: v, cross sections per unit volume in pure quark matter, for 7' =15
MeV. Solid lines show complete results from Eq. (3.4), and dashed lines indi-
cate limiting forms from [81]. The labels “Degenerate” and “Non-Degenerate”
refer to neutrinos. Upper panels show results for two times nuclear matter
density, and the lower panels show results for a neutrino energy of 50 MeV (
is the chemical potential of the incoming quark).



3.1.2 Diffusion coefficients

The weak interaction timescales of neutrinos are much smaller than the

dynamical timescale of PNS evolution, which is on the order of seconds. Thus,
until neutrinos enter the semi-transparent region, they remain close to thermal
equilibrium in matter. Hence, neutrino propagation may be treated in the
diffusion approximation with the differential equations for the flux of energy

(F,) and lepton number (H,) [12]:

-A—¢ [ O (Te? |
H, —TQ;Q ’ _D4 (8: ) + (Te?) D3ag—(:)_ and
3,-0—¢ [ 0 (Te? |
o (‘;TQ _Dg <6: ) + (Te?) DQG"—ET)_ (3.13)

where A and ¢ are general relativistic metric functions, n = p,, /T and Dy, Ds,
and D, are diffusion coefficients decomposed as
Dy = DY + D, D; = Dy — D¥e, D, = DY + D} +4Dy* . (3.14)
The transport of g and 7 neutrinos and anti-neutrinos are well approxi-
mated [11] by assuming that they contribute equally to D, and are repre-
sented by D"+. These coefficients are defined in terms of the energy dependent
diffusion coefficient DP(E,) by
o
Dy = ["dw a" DM (E) f(E) 1~ f(E)] (3.15)
where z = E; /T, and the superscript p denotes either the electron neutrino,
the anti-electron neutrino, or the y and 7 neutrinos and their antineutrinos.
In turn, the energy dependent diffusion coefficient is obtained directly from
the cross sections per unit volume through

(D”(El))_1=1_1fllz %+x 3 %+(1—x) > 07 . (3.16)

=(p,L) r=(p,H) r=(p,Q)

where the (p, L), (p, H), and (p, Q) represent the sum over all the reactions of
particle p with leptons, hadrons, or quarks, respectively. The factor (1 — f 1)_1
ensures detailed balance, and x is the volume fraction of matter in the hadronic
phase.

Note that in the case of scattering, the Pauli blocking factor corresponding
to the outgoing neutrino is omitted, since the neutrino distribution function
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is not always known a priori unless a full transport scheme is employed. It is
possible, however, to devise a simplified scheme [12] in which the dependence
on the neutrino distribution function is minimized. Such a scheme is valid
only when scattering from light particles (either electrons or quarks) does not
dominate the opacity. Our results below show that this requirement is indeed
met, because absorption dominates over scattering by a factor of 2 to 5 at all
densities interior to the central densities of PNSs investigated here.

3.1.3 EOS of neutron star matter with quarks

We describe neutron star matter at finite density and temperature using
the Gibbs phase rules [15, 53]. The conditions of baryon number density and
charge conservation in the mixed phase are

ng =xng + (1 =) ng, Ozxnf—i-(l—x) n?—i—nf, (3.17)

where ng and n, are the baryon number and charge densities, respectively; H,
@, and L denote hadrons, quarks, and leptons. Since the dynamical time scale
is much longer than the weak interaction time scale, beta equilibrium implies
that the various chemical potentials satisfy the relations

e = Hve = My = Mo, 5 BB = bittn — ¢i(fle — ) 5 (3.18)

where b; and ¢; are the baryon number and electric charge of the hadron or
quark of species i. When the neutrinos are trapped, the electron lepton number
Y, = (ne + m,.)/np is initially fixed at a value ~ 0.4 as suggested by collapse
calculations.

Hadronic matter is described using a field-theoretical description in which
nucleons interact via the exchange of o, w, and p mesons. The meson-nucleon
couplings and the couplings of the o self-interaction terms are determined by
reproducing the empirical properties of nuclear matter, EFg = —16.0 MeV,
M*/M = 0.6, K = 250 MeV, agm = 32.5 MeV, and ng = 0.16 fm ™. Quark
matter is described using the MIT Bag model, with a bag constant of B =
200 MeV /fm®. (Similar results are obtained with four-quark interactions in
the Nambu—Jona-Lasinio model [15].) The mixed phase is assumed to be
homogeneous. For more details of the calculation of the EOS, see Chapter 2.
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3.2 Results

3.2.1 Cross sections of neutrino-quark reactions

The cross sections per unit volume (or inverse mean free paths) for v,
scattering and absorption are shown in Fig. 3.2 for the two stages of PNS
evolution described before. It is important to recall that these curves are
drawn under conditions of fixed entropy. (Constant entropy adiabats shown
in Fig. 2.3 of Chapter 2 are helpful to gain insights into the behavior of the
cross sections shown here.) The individual contributions from the different
reactions in the pure nucleon and quark phases (thin lines) and in the mixed
phase (thick lines) are marked in this figure. The vertical dashed lines show the
central densities of 1.4Mg and the maximum mass configurations, respectively.
Notice that quarks exist only in the mixed phase; the pure quark phase occurs
at densities above the central densities of maximum mass stars in all cases
shown here.

In general, for a given density and temperature, the pure quark-phase
opacity (or equivalently the cross section per unit volume) is less than that of
hadrons due to the former’s smaller matrix elements sampled by a relativistic
phase space. In addition, for a given entropy and density, pure quark matter
favors a lower temperature than hadronic matter [15]. It is natural, therefore,
that within the mixed phase region of hadrons and quarks, the net cross sec-
tion per unit volume either flattens or decreases with increasing density. The
reduction of opacities from that of the pure hadronic phase is enhanced in the
v—free case, reflecting the more extreme decrease of temperature across the
mixed phase region in that case [15]. The precise density dependence of the
net neutrino opacity depends upon the details of the mixed phase.

Note that the total absorption cross section is larger than the scattering
cross section for both degenerate and nondegenerate situations. As discussed
above, this justifies our approximate treatment of scattering in the calculation
of the diffusion coefficients.

The diffusion coefficients most relevant for the PNS simulations, in matter
with and without a mixed phase of hadrons and quarks, are Dy and D,, and
these are shown in Fig. 3.3. Insofar as absorption dominates scattering, the
behavior of these coefficients can be understood qualitatively by utilizing the
limiting forms for neutrino absorption in the degenerate (Eq. (3.11)) and non-
degenerate (Eq. (3.12)) cases, respectively. The actual behavior is somewhat
more complicated, but this assumption will suffice for a qualitative interpre-
tation of Fig. 3.3. In this case, the leading behaviors may be extracted to
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Figure 3.2: v, cross sections with various particles in matter containing a
mixed phase of quarks and hadrons (ng = 0.16 fm™*). The left panels show
scattering cross sections for neutrinos with the indicated incoming hadrons,
quarks, or leptons. Thick lines show the extent of the mixed phase region.
The right panels show absorption cross sections on nucleons and quarks. The
upper panels correspond to the neutrino-trapped era when s = 1 and Y;, = 0.4,
and the lower panels to the time following deleptonization when s = 2 and
Y, = 0. The vertical dashed lines labelled u; 4 and u,,,, indicate the central
densities of a Mg = 1.4 M, star and the maximum mass star (Mg = 2.22 Mg
for the upper panels and Mg = 1.89 M, for the lower panels), respectively.
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be
Dy o< M /T) (11 /T)? and Dy o< Mp,/T =0), (3.19)

where the mean free path A = (¢/V)~!. In these equations, D, is evaluated
under conditions of extreme neutrino degeneracy and D; is evaluated assuming
that p, = 0. Thus, both Dy and D, should simply reflect the inverse behavior
of the cross section per unit volume, which decreases with increasing density
in the pure phases, but increases within the mixed phase region.

Concerning the evolution of a PNS, we expect that the initial star, which
is lepton rich, will not have an extensive mixed phase region. Only after
several seconds of evolution will quark matter appear. In the newly-formed
mixed phase region, the neutrino opacity will be substantially smaller than
in the case in which a mixed phase region does not appear. However, due
to the large v—optical depth of the PNS, neutrinos remain trapped, and no
significant effect on emergent neutrino luminosities is expected at early times.
As the star evolves, however, the relatively larger increase in opacity (note
the increases in D, relative to D) and the growing extent of the mixed phase
region eventually allows a larger flux of neutrinos, and thereby a more rapid
evolution.

In summary, we have calculated neutrino opacities for matter containing
quarks for the temperatures, neutrino degeneracies and lepton contents rele-
vant for PNS simulations, employing Gibbs phase rules to construct a mixed
hadron-quark phase. We find that, in the presence of quarks, neutrinos have a
significantly smaller opacity and hence larger diffusion coefficients than those
in purely hadronic matter at similar densities. These differences may have an
observable impact on the neutrino flux from PNSs containing quark matter,
but these differences are not expected to become apparent until the PNS is
10-20 s old. Simulations of PNSs with a mixed phase of hadrons and quarks
are under investigation [80]. The influence of heterogeneous structures [54, 55]
and superfluidity [48] in matter will be addressed in future work.
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Figure 3.3: Diffusion coefficients for the neutrino-trapped era (left panel) and
hot deleptonized era (right panel). Thick lines show the extent of the mixed
phase. Solid lines correspond to matter with a mixed phase, and dashed lines
to matter containing only nucleons. The vertical dashed lines have the same
meaning as in Fig. 2.
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Chapter 4

Evolution of Quark Proto-Neutron Stars with
Quarks

A proto-neutron star (PNS) is born following the gravitational collapse of
the core of a massive star, in conjunction with a successful supernova explosion.
During the first tens of seconds of evolution, nearly all (~ 99%) of the rem-
nant’s binding energy is radiated away in neutrinos of all flavors [11, 12, 80].
The v—luminosities and the evolutionary timescale are controlled by several
factors, such as the total mass of the PNS and the v—opacity at supranuclear
density, which depends on the composition and equation of state (EOS). One
of the chief objectives in modeling PNSs is to infer their internal compositions
from v—signals detected from future supernovae like SuperK, SNO and others
under consideration, including UNO [86].

4.1 Exotic Phases in Dense Matter

In their landmark paper, Collins and Perry [87] noted that the super-
dense matter in neutron star cores might consist of weakly interacting quarks
rather than of hadrons, due to the asymptotic freedom of QCD [88, 89, 90].
The appearance of quarks causes a softening of the EOS which leads to a
reduction of the maximum mass and radius [91]. In addition, quarks would
alter v—emissivities and thereby influence the surface temperature of a neu-
tron star [92] during the hundreds of thousands or millions of years that they
might remain observable with such instruments as HST, Chandra and XMM.
Quarks would also alter the spin-down rates of neutron stars [93].

Many calculations of dense matter predict the appearance of other kinds
of exotic matter in addition to quarks: for example, hyperons or a Bose
(pion, kaon) condensate [10, and references therein]. An important question
is whether or not v observations from a supernova could reveal the presence
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of such exotic matter, and further could unambiguously point to the appear-
ance of quarks. The detection of quarks in neutron stars would go a long
way toward the delineation of QCD at finite baryon density which would be
complementary to current Relativistic Heavy Ton Collider experiments, which
largely address the finite temperature, but baryon-poor, regime. It would have
dramatic consequences for strong interaction physics in determining the EOS
and transport properties of dense matter.

4.2 Metastability and Black Hole Formation

An important consequence of the existence of exotic matter in neutron stars
(in whatever form, as long as it contains a negatively charged component), is
that a sufficiently massive PNS becomes metastable [9, 10, 58, 67, 94, 95, 96].
After a delay of up to 100 s, depending upon which component appears, a
metastable PNS collapses into a black hole [12, 80]. The collapse to a black
hole proceeds on a free-fall timescale of less than a millisecond [12, 97], much
shorter than v diffusion times, and the neutrinos still trapped in the inner
regions cannot escape. Such an event should be straightforward to observe as
an abrupt cessation of v flux when the instability is triggered [98].

The evolution of the PNS in the so-called Kelvin-Helmholtz phase, during
which the remnant changes from a hot, v—trapped, and lepton-rich object to
a cold and v—free star, occurs in near-hydrostatic equilibrium. The v—matter
interaction timescales are much smaller than the dynamical timescale of PNS
evolution, which is of the order of seconds. Thus, until neutrinos enter the
semi-transparent region at the edge of the star, they remain close to ther-
mal equilibrium with matter, and may be treated in the diffusion approxima-
tion [11, 12, 80].

In this chapter we provide a benchmark calculation with quarks by solving
the general relativistic v transport and hydrostatic equations (see [12, 80]), and
then compare our results with those of our previous work in which other com-
positions were studied. In addition, we assess the prospects of observing PNS
metastability and its subsequent collapse to a black hole through observations
in current and planned detectors.

4.3 Equation of State and Neutrino Opacity

The essential microphysical ingredients in our study are the EOS of dense
matter and its associated v opacity. We begin by considering two generic
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compositions: charge-neutral, beta equilibrated matter containing (i) nucle-
ons only (np) and (ii) nucleons with quark matter (np@). In the npQ case,
a mixed phase of baryons and quarks (pure quark matter exists only for very
large baryon densities, except for extreme choices of model parameters) is
constructed by satisfying Gibbs’ phase rules for mechanical, chemical and
thermal equilibrium [53]. The EOS of baryonic matter is calculated using
a field-theoretic model at the mean field level [32]. The results reported with
this EOS are quite general, as we verified by alternatively using a potential
model approach [10]. The quark matter EOS is calculated using a MIT bag-
like model (similar results are obtained with the Nambu—Jona-Lasinio quark
model). The details of the EOS are given in Chapter 2. We use v opaci-
ties [16, 62] consistent with the EOS (see Chapter 3). When quarks appear,
the v absorption and scattering cross sections dramatically decrease, the pre-
cise reduction being sensitive to the thermodynamic conditions in the mixed
phase.

4.4 Examples of Results

Fig. 4.1 shows the evolutions of some thermodynamic quantities at the
center of np(@ stars of various, fixed, baryonic masses (Mp). In the absence of
accretion, Mp remains constant during the evolution, while the gravitational
mass Mg decreases. With the EOS utilized, stars with Mg < 1.1 Mg do
not contain quarks and those with Mp 2 1.7 My are metastable. The latter
value is ~ 0.05 Mg larger than the maximum mass for cold, catalyzed npQ)
matter, because the maximum mass of cold v—free np() matter is this much
less than that of hot v—trapped matter [16]. Generally, due to the high lepton
(v) content initially present in the PNS, the electron chemical potential at the
center is too large for quarks to exist. For sufficiently massive stars, quarks
eventually appear after a certain amount of v loss occurs. For the Mg = 1.6
Mg, star, for example, quarks appear after about 15 s (indicated by a diamond).
Thereafter, the star’s central density increases for a further 15-20 s, until a new
stationary state with a quark-hadron mixed phase core is reached (for stable
stars) or for Mp 2 1.7 Mg, instability occurs (indicated by asterisks). It is
interesting that for this EOS the lifetimes for all masses are restricted to the
range 10-30 s, and slowly decrease with increasing mass. The appearance
of quarks is accompanied by an increase in Y, because of the depletion of
electrons; for the largest masses, the increase is very large.

To point out the major differences one might observe between the np and
np@ cases, we have estimated the 7, count rate in the SuperK detector in
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Figure 4.1: Evolutions of the central baryon density ng, v concentration Y,
quark volume fraction x and temperature 7T for different baryonic masses Mp.
Solid lines correspond to stable stars; stars with larger masses are metastable
(dashed lines). Diamonds indicate when quarks appear at the star’s center,
and asterisks denote when metastable stars become gravitationally unstable.
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Figure 4.2: A comparison of 7, count rates expected in SuperK from a PNS
containing either np or np() matter. The left panel shows times less than 10
s, while the right panel shows times greater than 10 s.



Figure 4.2. For this estimate, we assumed the total v luminosity from a PNS
at 8.5 kpc distance, corresponding to a Galactic supernova, was equally divided
among the six v species. The v energy spectra were assumed to be Fermi-Dirac
with zero chemical potential and a temperature corresponding to the matter
temperature in the PNS where the v optical depth was approximately unity.
The precise procedure is described in Refs. [12, 80]. It is difficult to discern
much difference in the early (¢ < 10 s) count rates from np and np@ stars. For
stars with Mp < 1.7 Mg, this is because quarks have not yet appeared. For
more massive stars, the fact that neutrinos are strongly trapped inhibits any
discriminatory signal from reaching the surface before this time. The signals
at later times ( ¢ < 25s), however, are substantially larger for the npQ@ case,
due to the decrease in v—opacity of npQ) matter and the increased binding
energy of npQ stars. Most importantly, the v—signal from metastable npQ)
stars halts abruptly when the instability occurs. Qualitatively, these features
are also found for npH and npK stars [12, 80].

We compare v signals observable with different detectors in Fig. 4.3, which
displays the v light curves as a function of Mpg for np@ stars. The two upper
shaded bands correspond to estimated SN 1987A (50 kpc distance) detection
limits with KII and IMB, and the lower bands correspond to estimated de-
tection limits in SNO, SuperK, and UNO, for a Galactic supernova (8.5 kpc
distance). The detection limits have been set to a count rate dN/dt = 0.2
Hz [80]. It is possible that this limit is too conservative and could be lowered
with identifiable backgrounds and knowledge of the direction of the signal.
The width of the bands represents the uncertainty in the 7, average energy
due to the flux-limited diffusion approximation [12, 80]. We conclude that it
should be possible to distinguish between stable and metastable stars, since
the luminosities when metastability is reached are always above conservative
detection limits.

The drop in v luminosity for stable stars is associated with the end of the
Kelvin-Helmholtz epoch when the PNS is becoming optically thin. This por-
tion of the v light curve is approximate due to the breakdown of the diffusion
approximation. It is an apparent coincidence that this occurs simultaneously
with the collapse of the lower mass metastable stars.

Our choice of bag constant, B = 150 MeV fm 3, in conjunction with the
baryonic EOS we used, was motivated to maximize the extent of the quark
matter phase in a cold neutron star, and was limited by the necessity of produc-
ing a maximum mass cold star in line with accurate observational constraints
(Mg = 1.444 M,). Increasing B, or employing an alternative quark EOS that
otherwise produces a larger maximum mass, delays the appearance of quarks
and raises the metastability window to larger stellar masses. Necessarily, this
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Figure 4.3: The total v—luminosity for np() stars of various baryon masses.
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results in an increased timescale for metastability for a given mass, and a
lower v luminosity when metastability occurs. Fig. 4.4 shows the relation
between time to instability and Mp for the original case (B = 150 MeV fm—3,
thick solid curve) and a case with B = 200 MeV fm™® (thin solid curve), in
which the maximum gravitational mass of a cold neutron star is about 1.85
Mg. For the latter case, the metastability timescales lie in a narrow range
40-45 s. These, and the metastability masses, are both larger than obtained
for B = 150 MeV fm 2 and have narrower ranges. Further increases in B
diminish the size of the instability window, because the appearance of quarks
is shifted to progressively larger densities.

Figure 4.4 also compares the metastability time-M g relation found for mat-
ter containing hyperons (npH, dashed lines [12]) or matter with kaons (npK,
dotted line [80]) instead of quarks. All three types of strange matter are sup-
pressed by trapped neutrinos [10, 15], but hyperons always exist in npH matter
at finite temperatures and the transition to quark matter can occur at lower
densities than that for very optimistic kaon cases [80]. Thus, the metastability
timescales for npH matter can be very short, and those for np/K matter are
generally larger than for np() matter. Note the relatively step dependence of
the metastability time with Mp for npH stars, which decreases to very small
values near the maximum mass limit of hot, lepton-rich, stars. The thick npH
and np() lines, as well as the npK line, represent minimum metastability times
for a given Mp as discussed above. The thin np(@) and npH lines are for EOSs
with larger cold, catalyzed maximum mass.

4.5 Implications

Clearly, the observation of a single case of metastability, and the deter-
mination of the metastability time alone, will not necessarily permit one to
distinguish among the various possibilities. Only if the metastability time is
less than 10-15 s, could one decide on this basis that the star’s composition
was that of npH matter. However, as in the case of SN 1987A, independent
estimates of Mp might be available [99, 100]. In addition, the observation of
two or more metastable neutron stars might permit one to differentiate among
these models.

We have focused on times longer than approximately 1 s after core bounce,
after which effects of dynamics and accretion become unimportant. Studies
of the v signal during the first second, during which approximately 1/3 of
the energy is emitted, and at late times, as the star becomes optically thin
to neutrinos, requires more accurate techniques for v transport. In addition,
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Figure 4.4: Lifetimes of metastable stars versus the PNS Mp for various as-
sumed compositions. Thick lines denote cases in which the maximum masses
of cold, catalyzed stars are near Mg ~ 1.45 M, which minimizes the metasta-
bility lifetimes. The thin lines for the np() and npH cases are for EOSs with
larger maximum masses (Mg = 1.85 and 1.55 Mg, respectively).
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the earliest time periods require the incorporation of hydrodynamics [101, 102,
103, 104, 105).

Our conclusions are that (1) the metastability and subsequent collapse to a
black hole of a PNS containing quark matter, or other types of matter includ-
ing hyperons or a Bose condensate, are observable in current and planned v
detectors, and (2) discriminating among these compositions may require more
than one such observation. This highlights the need for breakthroughs in lat-
tice simulations of QCD at finite baryon density in order to unambiguously
determine the EOS of high density matter. In the meantime, intriguing possi-
ble extensions of PNS simulations with np(@ matter include the consideration
of heterogeneous structures [54], quark matter superfluidity [48] and coherent
v scattering on droplets [55].
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Chapter 5

Color-Neutral Superconducting Quark Matter

5.1 Introduction

Studies of QCD at high baryon density have led to the expectation that
quark matter is a color superconductor in which the pairing gaps of unlike
quarks (ud, us, and ds) are as large as 100 MeV. For three massless flavors,
a symmetric ground state called the Color-Flavor-Locked (CFL) phase, in
which BCS-like pairing involves all nine quarks, is favored [106, 107]. At lower
density and for physically relevant values of the strange current quark mass
(100 < ms/MeV < 300), a less symmetric (2SC) phase in which only the light
up and down quarks (m,q < 10 MeV) pair is expected [42, 43]. For recent
reviews, see Refs. [108, 109].

With the exception of the work by Iida and Baym [110], and more recently
by Alford and Rajagopal [111], little attention has been paid to the issue of
color neutrality in superconducting quark phases. These works are the pri-
mary motivation for this study. The issues addressed here are similar to those
addressed by Alford and Rajagopal [111] who perform a model independent
analysis that is valid when m; < p and A ~ m?/u, where A is the pairing
gap and p is the quark number chemical potential. We employ an extended
version of the the Nambu-Jona-Lasinio model (NJL hereafter), which shares
many symmetries with QCD including the spontaneous breaking of chiral sym-
metry, and calculate the thermodynamic potentials, €2, and pairing gaps, A,
self-consistently in the CFL and 2SC phases. Our analysis leads to results that
complement some of the conclusions in Ref. [111]. There are, however, sev-
eral aspects in which we go further. First, we employ a self-consistent model
which uniquely determines both the diquark and the quark-anti quark con-
densates. Second, since the realization of color and electric charge neutrality
becomes non-trivial only for physically relevant values of mg, we retain terms
to all orders in m; in our calculation of 2. As noted in Ref. [111], this is
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particularly important for understanding the phase structure of quark matter
at densities (or equivalently, y) of relevance to neutron stars, since m,/u is
not small compared to unity. In addition, we establish the phase structure of
superconducting color-neutral quark matter at finite temperature and lepton
content which was not considered in [110, 111], but is relevant for studies of
proto-neutron stars.

5.1.1 Charges, chemical potentials, and color neutrality

Bulk, homogeneous matter must be neutral with respect to charges which
interact through the exchange of massless gauge bosons. Otherwise, the free
energy density cost would be infinite. In the CFL phase, diquark condensa-
tion breaks color symmetry and all eight gluons become massive via the Higgs
mechanism. Similarly, in the 2SC phase, SU(3). is broken down to SU(2). and
five of the eight gluons become massive. In both the CFL and 2SC phases,
however, an U(1) gauge symmetry remains unbroken [106]. The associated
charge is called Q. The generator for this charge in the CFL phase is a lin-
ear combination of the usual electric charge ) and a combination of color

generators T3 and Tg, and is given by

~ 1 1
Q=Q-5 T~ 5T, (5.1)

where @ = diag(2/3,—1/3,—1/3) in flavor space, and T3 = diag(1,—1,0) and
Ts = diag(1/+/3,1/v/3,—2/v/3) in color space.

The color superconducting phase is, by construction, neutral with respect
to Q charge. Why then should we impose, in addition, local color neutrality?
As noted earlier, gluons become massive in the superconducting phase and the
free energy density cost of realizing a non-zero color density in bulk matter
need not be infinite. Further, although a finite sample embedded in the normal
state must be a color singlet, this alone does not require local color neutrality
since color singletness is a global constraint. Hence a heterogenous phase with
colored domains of typical size similar to the color Debye screening length
is a possibility. However, in a homogeneous and color conducting medium a
color charge density in the bulk is unstable as it generates a chromo-electric
field resulting in the flow of color charges [111]. Color neutrality is therefore
a requirement for the homogeneous phase. Neutrality with respect to charges
associated with T3 and Ty is achieved by introducing appropriate chemical
potentials ps and pg in analogy with the charge chemical potential pug. As
noted in Refs. [111, 112], color neutrality is a prerequisite for color singletness,
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but the additional free energy density cost involved in projecting out the color
singlet state is negligible for large samples.

The superconducting ground state breaks both color and electromagnetic
gauge symmetries. It would therefore seem that excitations above the con-
densate can only be characterized by the unbroken @) charge. At first sight,
this would imply that electrons and unpaired quarks carry only Q charge and
must therefore be assigned only a 5 chemical potential. If this were indeed
the case, it would be impossible to neutralize the 2SC phase in the bulk. This
is because the condensate is Q neutral, but has color and electric charge that
cannot be neutralized by particles with only Q charge. The resolution to this
puzzle lies in noting that our expectation to assign only those charges that
are unbroken by condensation to excitations applies only to excitations above
a charge-neutral ground state. In this case, charges associated with broken
gauge symmetries are easily delocalized and transported to the surface by the
condensate. It is however important to note that only the excess broken charge
resides on the surface. In describing particles that make up the charge neu-
tral ground state we must use vacuum quantum numbers. In this case, the
individual charges are localized on the particles in the bulk. Therefore, in
what follows we treat electrons and unpaired quarks as carrying their vacuum
charges in our description of the neutral ground state.

5.2 Thermodynamics

We begin with the NJL Lagrangian [15, 71, 72, 77, 113, 114] supplemented
by both a diquark interaction and the t’Hooft six-fermion interaction which
reproduces the anomalous Uy (1) symmetry breaking present in QCD [38].
Explicitly,

L = Ga (i¢’(5ij5aﬁ — Mijlap — fij, a,BVO) 958
8 2 ) 2
+Gs Y- |(aX5a)” + (ai7)5a)”|
a=0
—GD [det,-j Gio, (1 -+ i’Y5) q;B + detij Gia (1 - i75) qj/J’] 5&,6
+Gprg Z Z [((jiaﬁijkﬁaﬁwqgg) (Cji?a’ ei'j’kﬁa’ﬁ’vqj"ﬁ’)
E

+ ((jz'ai’%eijkeaﬁ'yqj'cg) <Q§ali75€i’j'k€a’ﬂ’7Qj'5')] , (5.2)

where m;; is the diagonal current quark matrix, and the spinor ¢¢ = Cq”,
where C' is the Dirac charge conjugation matrix. We use «, 3, for color (r=
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red, b= blue, and g= green) indices, and ¢, j, k for flavor (u= up, d= down, and
s= strange) indices throughout. The chemical potential matrix is diagonal in
flavor and color, and is given by

Wij, ap = (M0i5 + Q)0 + 0ij (Tsaptts + Toaptis) (5.3)

where p is the quark number chemical potential. Since the couplings Gs, Gp,
and G'prg are dimensionful, we impose an ultra-violet three-momentum cutoft,
A, and results are considered meaningful only if the quark Fermi momenta are
well below this cutoff. The values of the couplings are fixed by reproducing
the experimental vacuum values of fr, m,, mg, and m, as in Ref. [72]. For
the most part, we discuss results obtained using

Moy = Moa=55MeV,  mg,=140.7 MeV, A =602.3 MeV,
GsA? = 1835, GpA®=1236, and Gprgp=3Gs/4. (5.4)

We note that, in vacuum, the effective four-fermion interaction in the gq and
dq channels are related by a Fierz transformation which yields Gprg = 3Gs/4.
Because the mean-field approximation breaks this Fierz invariance, these terms
must be treated separately and each carry independent couplings. We also dis-
cuss results for Gprg = G, and provide a brief discussion on the sensitivity
of the results to acceptable changes in the couplings in our conclusions. Note
that Eq. (5.2) does not include the possible presence of a six-fermion interac-
tion due to diquark ({g¢g)) condensates; such interactions have been assumed
to result only in a renormalization of the four-fermion diquark interaction. In
the mean field approximation, the thermodynamic potential per unit volume
(see sections C.1 and C.2 in Appendix C) is given by

] Ak
Q = 2G5 Y (@w)’ +4Gp (uu) <dd> (Bs)+ > | ‘
i=u,d,s kv 4GDIQ
1 Bp A\ —\i/T
5J Gy ; lE +TIn(1+e )1 +Q, (5.5)

where (g;4;) (i = u,d, s) is the quark condensate, and the term Q4 ensures that

the zero density pressure, P = —(2, of non-superconducting matter is zero:
_ _ - ~ d3
Qo =2Gs > (Ga:)5 —AGp (uu), <dd>0 (8s)o + 2NNy Z/ (27:;) Vm? + p?,
i=u,d,s i

(5.6)
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where < ¢;q; >¢ denotes the value of the quark condensate at zero density.
The gap matrix
A = 9G prq {Giaivse e gy ) (5.7)

features three non-vanishing elements. Using the standard notation of denot-
ing A* through the flavor indices 7 and j, we have

ANgs = A", Ays = AY, and Ayg = A% (5.8)

This corresponds to the ansatz in Ref. [107], except that color sextet gaps
(symmetric in both color and flavor) are ignored. Inclusion of the sextet gaps
modifies our results only slightly, because such gaps are small [107]. Note,
however, that we have removed the degeneracy between A,; and Ay in order
to explore phases in which these gaps may not be equal.

The quasiparticle energies A\; may be obtained by diagonalizing the inverse
propagator. Equivalently, \; are the eigenvalues of the (72 x 72) matrix

0= = 0 -0
=Y -0 = Miy° + ia AiryysC
D = ’ ., (5.9)

’YOCZ’Y5A —’YO’?T : ﬁ+ Mz'YO — Mia
where M; are the dynamically generated quark masses and A is given by
A = Aud€3ij63a,8 + AusEQijé‘Qa’g + Adsglijglaﬂ . (510)

Equations (5.2) through (5.10) enable a consistent model calculation of the
thermodynamics of superconducting quark matter as a function of the chemical
potentials p, pg, ps, and pg at arbitrary temperatures. For a given set of
these chemical potentials, the dynamical (or constituent-like) masses M; and
the gaps A;; are determined by the solutions of equations that result from
extremizing {2 with respect to (g;¢;) and A;;, respectively.

The phases are labeled according to which of the three gaps are non-zero:
(1) Normal phase: all gaps zero, (2) 2SC phase: only A, is non-zero, and (3)
CFL phase: all gaps are non-zero. Where needed, we add electrons simply by
noting that . = —pg, and include their free Fermi gas contribution to (2.

Recall that the ground state is Q neutral, i.e. ) NG = —0Q/0pg = 0, which
is a consequence of the fact that the condensates are @ neutral. _Quasiparticles
carrying Q charge are massive with m ~ A . In addition, the Q susceptibility
Xo = Ong /8uQ ~ 0; in fact, the free energy density is independent of ;5 at
zero temperature. This is because to generate () charge in the ground state,
we must break a pair and the energy cost is of O[A]. In contrast, the free
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energy density depends on pg, us, and ug, and, the corresponding individual
susceptibilities do not vanish. For a physical m, of order 100 MeV, there is
no apriori reason to expect equal numbers of u, d, and s quarks in the CFL
phase. The pairing ansatz in Eq. (5.8) and the arguments of Rajagopal and
Wilczek [115], however, guarantee that

Nrd = Ngu , Nbd = Ngs ; and Nps = Ny (5.11)
or equivalently, that
Ny = Ny, Ng =Ny, and Ng = Ny, (5.12)

where n,; is the number density of quarks with color @ and flavor i, and n,
(n;) is the net number density of color « (flavor 7). Pairing by itself does
not enforce either color or electric charge neutrality. The strange quark mass
induces both color and electric charge in the CFL phase. We are, however, at
liberty to adjust the chemical potentials p3 and ug to enforce color neutral-
ity. Moreover, since the pairing ansatz enforces Q neutrality, enforcing color
neutrality automatically enforces electric charge neutrality at pg = 0. In con-
trast, the 2SC phase requires a finite pg to satisfy electric charge neutrality
and hence admits electrons.

5.3 Results for Gpjg = 3Gs/4

5.3.1 Zero temperature and zero neutrino chemical po-
tential

We turn now to discuss results, beginning with those at temperature 7' = 0.
The color densities for the chemical potentials u3 and ug are defined as

ng = s and ng= o (5.13)
The NJL model results for these densities are shown in Figure 5.1 for matter
which is not color or electrically neutral. The color density corresponding to
the “3” gluon is zero at zero temperature in both the CFL and 2SC phases,
since u3 = 0 as discussed in the analytical results below. The color density
corresponding to the “8” gluon is clearly non-zero and demands a non-zero
value of g to ensure color neutrality.
In Figure 5.2, we show the dynamically generated or constituent d and s
quark masses M; (left panel) and the pairing gaps A;; (right panel) as functions
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of i in the CFL and 2SC phases. The u quark mass, which tracks the trend of
the d quark, is not shown for the sake of clarity. The dark (light) curves refer
to the case in which color and electric charge neutrality is (is not) imposed. All
masses decrease with increasing u, since all of the (gg) condensates decrease
with p. Note that the requirement of color and charge neutrality has a larger
effect on the s quark mass in the 2SC phase than in the CFL phase. This
is because neutrality in the 2SC phase requires a large and negative electric
charge chemical potential. In the discussion that follows, we will show that
pg ~ —m?2/2p in the 2SC phase. Further, since pus = p — pg/3, a large and
negative ug enhances the strange quark density which in turn suppresses the
(5s) condensate.

The right panel of Figure 5.2 shows the various gaps in the CFL and 25C
phases. Imposing color neutrality reduces A4, since the numbers of red and
green quarks (equivalently of u and d quarks) are reduced relative to the
colored case (see the analytical analysis below). For the same reason, color
neutrality increases the gaps involving strange quarks. These trends are broken
only when p begins to approach the ultra-violet cutoff A. The strong increase
of the A,4 gap as p decreases for matter in which neutrality is not imposed is
due to the strong decrease in the gaps involving strange quarks.

In Figure 5.3, we show the chemical potentials ;3 and pg (as functions of
1) required to achieve color and electric charge neutrality in the CFL and 2SC
phases. The solid curves refer to results of the NJL model calculations. The
left panel of Figure 5.4 shows the pressure P versus y at T' = 0. Here the dark
(light) curves refer to the case in which color and electric charge neutrality is
(is not) imposed. Note that the pressure of the color and electrically neutral
normal phase falls below that of the 2SC phase for all us shown. The pressure
differences AP or the free energy density cost necessary to ensure color and
electric charge neutrality in the CFL and 2SC phases are shown in the right
panel of Figure 5.4. Here also the solid curves refer to results of the NJL model
calculations.

In order to gain a qualitative understanding of the results in Figures 5.3
and 5.4, we undertake an analytical analysis of a simpler model also considered
in Ref. [111]. In this analysis, we consider u and d quarks as massless, and
include corrections due to the s quark mass m; at leading order as a shift in
its chemical potential. This does not properly account for the shift in energy
due the strange quark mass for states far away from the Fermi surface, but
is a consistent approximation in this context since we are primarily interested
in the leading order cost of enforcing neutrality. Further, we assume that all
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gaps, including those involving the s quark, are independent of m,,! and that
both the gaps and m, are weak functions of the chemical potentials. With
these assumptions, and to leading order in A

QCFL = Qrgb + Qrg + Qrs + Qgs ’

Qg = —3%5@?+£+1é+3ﬁﬁﬁ+wé+4ﬁn,

Qy = —# (1ing + 322, )

O = —# (,ufb + 3A2,ufb) ,  and

Qgb 62 (/féb + 3A2u§b) , (5.14)

where we have written the free energy of the CFL phase in terms of the 3 x 3
block involving ru — gd — bs quarks, and three 2 x 2 blocks involving rd — gu,
rs—bu and gs—bd quarks, respectively. Each of the three 2 x 2 blocks is rigid in
the sense that the free energy is unaffected by differences in chemical potentials
of quarks that pair in a given block [115]. The free energy depends only on
the average chemical potential. The 3 x 3 block does not exhibit this rigidity;
here, the quasi-particle energies depend on the splitting between the chemical
potential characterizing the ru, gd and bs quarks. Chemical potentials that
characterize the free energy of the 3 x 3 block are given by

2 2
Ug g m m
’ — ___5’ d = __s, 5.15
M1 =p+ \/3 H2 = b \/g 3 an M3 = W 6 ( )

and the common chemical potentials that appear in the free energy expressions
of the 2 x 2 blocks are given by
s ?

Hs
I T L N Y 5.16

H3g m}
and  fig1 >3 au
We note that, in general, pairing between particles with dissimilar masses
does not require a common chemical potential. Maximal BCS-like pairing
requires that the distribution of the pairing partners be identical in momentum
space. Since we treat the v and d quarks as massless particles and account
for the effects of the s quark mass through a shift in the chemical potential in

LCorrections to A due to m; arise at O[m?2/u]; for a detailed discussion, see
Ref. [116].
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our analytic analysis, a common chemical potential within each pairing block
ensures that the aforementioned pairing criterion is satisfied.

In the CFL phase, the stress induced by the strange quark mass generates
color charges. In the limit of nearly equal and vanishing light quark masses, the
CFL scheme in Eq. (5.12) indicates that we will require only a non-zero ug to
achieve color neutrality. This justifies why we neglect p1g and p3 in Egs. (5.15)
and (5.16). To leading order in the parameter m?/u, and assuming that the
differences between the various gaps are small and u, ms-independent, we find
that

1 m? m* m2A?
CFL)=——_"s L o|™s ™s 5.17
Hs(CFL) 2V/3 1 l/f” 3 ] (5:17)

by requiring 0Qcpr/Ous = 0. Since n, = ng and hence n, = n, when there
are no electrons, pu3(CFL) = 0 identically in the CFL phase at zero temper-
ature. Naively, Eq. (5.17) would imply that the free energy density cost of
enforcing color neutrality in the CFL phase is of O[m?u?]. However, we find
that such contributions are absent due to cancellations. This result (see the
lower-most dotted curve in Figure 5.3), with m, and A of the NJL model as
inputs, provides an excellent approximation to the exact NJL result. Utilizing
Eq. (5.17), we find an analytic estimate for the free energy density cost in the
CFL phase:

AQerr = Qcrrn(ps) — Qerrn(0) (5.18)

_ s e
792 MZ’ ©2

5m? lmG m4A2]
The lower dotted curve in the right panel of Figure 5.4 shows that this result
is in quantitative agreement with the NJL model calculation.

In the 2SC phase, the pairing phenomenon itself gives rise to color charges.
The 2SC thermodynamic potential, to leading order in the gap and consistent
with the approximation scheme described earlier, is

QQSC' = Qrug;d + eree )

Qrugd _W <:u’;lugd + 3A2:u‘3ugd) )
1
Oee = 355 (o + Hioa + figs + fig + g T 115) - (5.19)

The chemical potentials appearing above are defined by

O )
Mrugd = ,LL+\/§+ 6; Hou = K \/§+ 3 3
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— -5k =p— -2 and
Hod 1% \/g 3 Hbs M \/g 3 2/]] n
2
m
Hrs = Hgs = p+ £ _Fo T . (520)

The condition to ensure color neutrality, 0Qssc/0ps = 0, yields

1 A? At

us(25C) 33 4 + O ll‘?’] , (5.21)
where we have used a common value of A (independent of ;1) in the analytical
analysis. Note that ug(2SC) does not depend on m; at leading order. Since
pairing in the 25C phase involves red and green quarks, it does not induce a
color 3-charge; hence p3(2SC) = 0. However, electric charge neutrality in the
2S5C phase requires an adjustment due to the magnitude of m,. At leading
order in a 1/p expansion, we find

+ 0 [M—?f, TS] (5.22)
by setting 0$2sc/0pg = 0. As in the CFL phase, the free energy density cost
of enforcing color neutrality in the 2SC phase is small, because O[A2y?] terms
cancel and the free energy density begins to change at O[A*Y]. Similarly, we
find that there is no cost for enforcing electric charge neutrality in the 25C
phase at O[u?]. Using the results in Egs. (5.21) and (5.22), the free energy
density cost of enforcing color and electric charge neutrality becomes

1 ANZm? AAY
Ase = Q - Q =_— |m; :
25C 2sc (s, 1Q) 25¢(0,0) 82 (ms + 3 + 3 )
mé A5 AZm?

Although the free energy density costs of enforcing color neutrality in the CFL
and 2SC phases are of the same order, the cost in the 25C phase is numerically
larger. This is in part due to the larger strange quark mass in the 25C phase
and because the free energy density cost due to A and m, dependent terms
add in the 2SC phase. The analytical results in Eqgs. (5.21), (5.22), and (5.23),
shown as dotted curves in Figures 5.3 and 5.4, compare well with the results
of the NJL model.
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5.3.2 Phase diagram at finite temperature and lepton
content

In the proto-neutron star context, matter is subject to stresses induced by
finite temperature and lepton number chemical potentials [10]. Since electrons
have both electric and lepton number charges,

fe = —HQ + Pre (5.24)

where . = 1, is the chemical potential for electron lepton number. In order
to explore the effects of a finite neutrino chemical potential and finite tem-
perature on the superconducting phases, we employ the NJL model, Eq. (5.5)
with extensions to include neutrinos and electrons.

Figure 5.5 shows representative cross-sectional views of the T'—u—p,, phase
diagram. The left panel displays results at fixed 4 = 460 MeV. With increasing
temperature, a first order transition occurs from the CFL phase to the 25C
phase with ud pairing. For ur. = 0, the transition occurs at 7' ~ 17 MeV.
The corresponding baryon densities are ng = (n, + ng + n,)/3 = 1.06 fm 3
in the CFL phase and ng = 0.94 fm 2 in the 2SC phase. At zero neutrino
chemical potential, an analytic estimate of the critical temperature 7, for the
CFL-2SC transition can be obtained by assuming that the gaps in the 2SC
and CFL phases are nearly equal to each other and to their zero temperature
values. We find that

V2 45A 9 m?2 dm, ,
Tc = 7A0 1_5A—0 fBCS—I—Q—OA—gE gBCS with
A2\
bncs = <1+2W2T]§CS> , (5.25)

where Ay is the zero temperature gap, A and dm; are the differences between
the gaps and the strange quark masses in the 2SC and CFL phases, respec-
tively. Tgcs is the temperature at which the gap in the CFL phase would
vanish, assuming that A(T) = AO\/l — (T'/Tscs)?. Note that, in general,
gaps involving strange quarks do not vanish at the transition, i.e, the phase
transition is first order. This is because at leading order, the critical tem-
perature T, ~ A,/2.22 is less than that for the second order BCS transition,
Tses =~ Ag/1.76. It is clear from Eq. (5.25) that contributions to T, due to A
and dm; can easily alter this, allowing for a BCS like second order transition.
If the magnitude of the gap in the 2SC phase is larger than that in the CFL
phase, T, is lowered and the transition becomes more strongly first order.
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Accommodating a finite lepton number in the CFL phase is expensive,
because the requirement of color and electric charge neutrality in this phase
excludes electrons. At T = 0, the transition from the CFL to 2SC phase
occurs at pr. ~ 150 MeV. The latent heat density, TA(OP/0T), lies in the
range (2-15) MeV /fm? along the boundary of the first order phase transition.
With increasing temperature, the critical lepton chemical potential at which
the CFL-2SC transition occurs decreases. This is because the gaps in the CFL
phase decrease with increasing 7'; consequently, unlocking occurs at smaller
Hve -

The right panel in Figure 5.5 shows the phase boundaries at fixed p,, = 200
MeV. For this neutrino chemical potential, the CFL phase is preferred above
@ = 460 MeV at T = 0. For low (high) values of p, the region of the CFL
phase shrinks (expands) progressively to lower (higher) values of 7" and p,,. In
contrast, the 2SC-Normal phase boundary is relatively unaffected by increasing
values of p (in the range relevant for proto-neutron star studies), although
minor variations do occur. Note that with increasing temperature, the phase
transition switches from first to second order. This switch is due to the fact
that the A,; and Ay, gaps decrease along the first order phase transition line.
When these gaps vanish (at T ~ 25 MeV for p,, = 200 MeV), the phase
transition becomes second order. In Figure 5.5, contours of constant baryon
density are shown by the dotted curves in both panels. Notice that, for the
values of p and p,, chosen for display, the 2SC phase supports lower baryon
densities than the CFL phase. Across the first order phase transition, the
density contours are discontinuous. We wish to add that the phase in which
Ays # Ags was found to be thermodynamically disfavored in the range of
T, p, and p,, explored here.

In this chapter, we have not considered the role of Goldstone bosons in the
CFL phase. The Kt meson is expected to be the lightest positively charged
meson in the CFL phase [117]. The inclusion of Goldstone bosons in the
excitation spectrum can alter some of the above results as found in Ref. [52].
In particular, charged kaon condensation can allow for the presence of electrons
at finite pur. and lower the free energy density cost for accommodating lepton
number. This will likely affect the results in Figure 5.5 quantitatively, but we
expect the generic trends to remain intact at the qualitative level.

The consequences of requiring local color neutrality in superconducting
quark matter with and without neutrinos at both zero and finite temperatures
are our principal findings. Quantitative results, especially those for quark
number chemical potentials approaching the ultra-violet cut-off in the NJL
model used, should be viewed with some caution. Notwithstanding this, the
basic qualitative features concerning the phase transitions appear to be generic,
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insofar as similar trends are found in our analytic analysis that employed a
simplified model without a cutoff. We also wish to emphasize that the phase
diagram in Figure 5.5 requires revision at low values of p (or low baryon
densities) for which a hadronic phase is more likely to be favored.

5.3.3 Sensitivity of Results to Gpyg

In order to assess the extent to which the results depend on the strength of
the diquark coupling, G'prg, we show results with Gp;g = G in Figures 5.6
through 5.9; in order, these results should be compared with those for Gprg =
3Gs/4 in Figures 5.2 through 5.5. Figure 5.6 displays the effective masses (left
panel) and the superconducting gaps (right panel) as a function of density for
the 2SC and CFL phases at zero temperature. The dark (light) curves refer
to matter in which color and electric neutrality is (is not) imposed. In the left
panel, the up quark masses are equal to the down quark masses and are not
plotted for the sake of clarity. In color neutral matter, the strange quark mass
is larger for the larger coupling at high density (compare Figures 5.2 and 5.6).
This is likely an artifact of the three-momentum cutoff at high density. As
expected, the gaps are larger for the larger G p;¢g, but the density dependence
is similar. The large increase (as a function of decreasing density) in the A4
gap for matter which is not neutral is due to the strong decrease in the gaps
involving strange quarks.

Results from the analytical expressions in Eqgs. (5.17), (5.21), and (5.22)
are compared with the exact results in Figure 5.7. The level of agreement
between these two results is unchanged from the case of the smaller diquark
coupling constant shown in Figure 5.3.

The pressure at zero temperature as a function of chemical potential pu
is shown in the left panel of Figure 5.8. The 2SC phase is favored up to
420 MeV, which is somewhat lower than the critical chemical potential for
the case of Gprg = 3Gs/4 (see Figure 5.4). The right panel displays the
pressure difference between matter in which color and electric neutrality are
imposed and the case in which color and electric neutrality are not imposed.
The extent of the low density region in which a 2SC phase is favored over the
CFL phase is not greatly changed from the case of Gprg = 3Gg/4 and the
25C phase continues to be favored over the normal phase, except at low u
where we expect hadrons to dominate. The dotted lines in Figure 5.8 are the
approximations of Egs. (5.23) and (5.18) and the solid line is from the NJL
model calculation.

Figure 5.9 shows the phase diagram in the yu,, — T plane for fixed u (left
panel) and the phase diagram in the g — 7" plane for fixed pu,, (right panel).
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This figure is slightly different from the phase diagram for Gp;g = 3Gs/4
in Figure 5.5 inasmuch as the chemical potential for the left hand panel is
430 MeV, in contrast to 460 MeV. The transition between the 2SC and CFL
phases in the left panel becomes second order as the temperature becomes
large. The phase transition in the right panel becomes second order at about
58 MeV. Because of the larger diquark coupling, the critical temperature is
nearly a factor of three higher than in Figure 5.5, where the phase transition
became second order at 22 MeV. The larger coupling constant also causes the
the transition to ungapped quark matter from the 25C phase to occur at a
higher temperature.

5.4 Astrophysical implications

The T' — p — p,, phase diagram offers clues about the possible phases
encountered by a neutron star from its birth as a proto-neutron star (in which
neutrinos are trapped) in the wake of a supernova explosion to its neutrino-
poor catalyzed state with ages ranging from hundreds of thousands to million
years. In earlier work, some aspects of how a phase transition from the normal
to the 25C phase would influence neutrino transport in a newly-born neutron
star were explored [48]. To date, detailed calculations of the evolution of a
proto-neutron star with quarks have been performed for the case in which only
the normal phase was considered [14]. Our findings indicate that the core of
a proto-neutron star may well encounter a 2SC phase first when matter is hot
and neutrino-rich before passing over to a CFL phase.

5.5 Conclusions

Color and electric charge neutrality in the superconducting quark phases
requires the introduction of chemical potentials for color and electric charge.
The magnitudes of these chemical potentials are sub-leading in p. The corre-
sponding free energy density costs are small and independent of p at leading
order with the free energy density cost for neutrality in the 2SC phase being
significantly larger than that in the CFL phase. Consequently, and in agree-
ment with Ref. [111], we find that the bulk 2SC phase is less likely to occur
in compact stars at 7' = 0 and p,, = 0. In the NJL model, a small 2SC win-
dow does exist at relatively low baryon density. However, since this window
occurs at very low density it is likely to be shut by the hadronic phase. If
homogeneous quark matter were to occur in neutron stars, it seems likely that
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with increasing p a sharp interface would separate hadronic matter and CFL
quark matter [51]. We note, however, that we have only considered homoge-
neous phases in this study and it is possible that less symmetric heterogenous
phases may well be favored for chemical potentials of relevance to neutron
stars. Examples include the CFL-Hadron mixed phase [51] and crystalline su-
perconductivity [118]. These possibilities alleviate the cost of enforcing color
neutrality, since in these cases it is only a global constraint. In such phases,
however, energy costs associated with gradients in particle densities must be
met.

At finite temperature and neutrino chemical potential, the CFL phase be-
comes less favored both because of its small specific heat and because of its
exponentially suppressed (by the factor exp(—A/T)) electron number density,
which makes the free energy density cost of accommodating lepton number
large. In contrast, the 25C phase has a larger specific heat and easily accom-
modates electron number, and is therefore the favored phase at finite temper-
ature and lepton number. We expect that the inclusion of Goldstone bosons
in the CFL phase will tend to extend the region in the 1" — p,, plane where
the CFL phase is favored, since Goldstone bosons contribute significantly to
the specific heat and also allow for the presence of electrons. In the absence
of Goldstone bosons, a first order unlocking transition occurs from the CFL
phase to the less symmetric 2SC phase with increasing lepton chemical poten-
tial. When the temperature is sufficiently high, the phase transition switches
from first to second order due to the fact that the A, and Ay, gaps decrease
along the first order phase transition line and eventually vanish.

As discussed above, different phases of color superconducting quark matter
are likely to be traversed by the inner core of a proto-neutron star during
its early thermal evolution. The task ahead is to study how these phases
and transitions between them influence observable aspects of core collapse
supernova, neutron star structure, and thermal evolution.
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Figure 5.1: Color densities for matter with pu3 = pug = 0 in the NJL model as
a function of quark number chemical potential u at zero temperature.
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Figure 5.2: Dynamically generated masses and pairing gaps in the CFL and
2SC phases at zero temperature from NJL model calculations. Dark (light)
curves refer to results when color and electric charge (C & Q) neutrality is (is
not) imposed.
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neutrality in the CFL and 2SC phases as functions of the quark number chem-
ical potential p at temperature 7' = 0. Solid (dashed) curves refer to results
of the NJL (simplified) model.
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u in the CFL, 2SC, and normal phases at temperature 7 = 0. Dark (light)
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is (is not) imposed. Right panel: Pressure differences AP or the free energy
density cost required to ensure C & Q neutrality in the CFL and 2SC phases
at T = 0. Solid (dotted) curves are results of the NJL (simplified) model
calculations.
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Chapter 6

Conclusions and Outlook

The primary goal of this work was to explore the effects of the presence
of deconfined quark matter on the structure and thermal evolution of neutron
stars. To this end,

1. The first calculation of the equation of state of quark matter using dy-
namically generated quark masses at finite temperature and finite neu-
trino chemical potential was performed. This equation of state was ap-
plied to the study of neutron star structure (Chapter 2).

2. Utilizing the results of Chapter 2, the mean free paths of neutrinos in
quark matter were calculated under conditions relevant for proto-neutron
stars in order to provide a self-consistent assessment of the effect of quark
matter on neutrino propagation in proto-neutron star evolution (Chapter
3).

3. In Chapter 4, a complete picture of the macrophysical evolution of a
proto-neutron star with quark matter was presented with the only de-
tailed and self-consistent calculation using modern microphysical ingre-
dients, namely, the equation of state of quark matter and its associated
neutrino opacities (Chapters 2 and 3). Metastability times were calcu-
lated for quark matter and compared with other softening components.
The feasibility of detecting quark matter in existing and planned neu-
trino observatories was discussed.

4. The first calculation of the phase diagram of color-superconducting quark
matter at finite temperature and neutrino chemical potential was pre-
sented using a model in which the gaps and the dynamical quark masses
were calculated self-consistently. The analysis included a new assessment
of the cost of enforcing both color and electric neutrality (Chapter 5).
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In order of the presentation in Chapters 2 through 5, the conclusions that
emerge from this study are:

1. That it is possible for a mixed phase to exist in a neutron star of virtually
any mass above 1.4 M. Depending upon the EOS, a mixed phase is
more likely to exist in stars larger than 1.5 M. The precise stellar mass
above which a mixed phase containing quarks might exist depends on
the “softness” of the hadronic EOS and the effective bag pressure of the
quark model. Although the quark content of matter at a given density
is maximized for stiffer hadronic equations of state, the extent of the
mixed phase region in a neutron star of a given mass is maximized for
softer hadronic EOSs. Only extreme cases result in a star with a pure
quark core.

This mixed phase is delayed until most neutrinos have diffused from the
star, leading to the possible metastability of proto-neutron stars (PNSs),
a robust result which depends only on the existence of quarks in dense
matter. Finite temperature permits the quark-hadron transition to oc-
cur at slightly lower densities than at zero temperature, but in a newly-
formed PNS this effect is swamped by the large trapped neutrino fraction
which has the opposite tendency. Furthermore, temperature decreases
with increasing density along adiabats in the quark-hadron mixed phase,
a behavior opposite to that generally found in a mixed phase region con-
taining a kaon condensate. This implies that core temperatures may
be significantly lower in stars containing quarks than in those not con-
taining quarks. Neutrino opacities, which are sensitive to temperature,
will be affected, but the implications for the emitted neutrino fluxes and
temperatures can only be reliably evaluated in the context of a detailed
PNS simulation discussed below.

2. In the presence of quarks, neutrinos have a significantly smaller opac-
ity and hence larger diffusion coefficients than those in purely hadronic
matter at similar densities (Chapter 3). These differences may have an
observable impact on the neutrino flux from PNSs containing quark mat-
ter, but these differences are not expected to become apparent until the
PNS is 10-20 s old.

Concerning the evolution of a PNS; it is expected that the initial star,
which is lepton rich, will not have an extensive mixed phase region. Only
after several seconds of evolution will quark matter appear. In a newly-
formed mixed phase region, the neutrino opacity will be substantially
smaller than in the case in which a mixed phase region does not appear.



However, due to the large v—optical depth of the PNS, neutrinos remain
trapped, and no significant effect on emergent neutrino luminosities is
expected at early times. As the star evolves, however, the relatively
larger increase in opacity and the growing extent of the mixed phase
region eventually allows a larger flux of neutrinos, and thereby a more
rapid evolution.

. Using the equation of state and neutrino cross section information above,
a detailed calculation of the evolution of a proto-neutron star with quarks
was performed (Chapter 4). The metastability and subsequent collapse
to a black hole of a PNS containing quark matter, or other types of mat-
ter including hyperons or a Bose condensate, are observable in current
and planned v detectors. However, discriminating among these compo-
sitions may require more than one such observation.

Clearly, the observation of a single case of metastability, and the deter-
mination of the metastability time alone, will not necessarily permit one
to distinguish among the various possibilities. Only if the metastability
time is less than 10-15 s, could one decide on this basis that the star’s
composition was that of npH matter. However, as in the case of SN
1987A, independent estimates of Mp might be available [99, 100]. In
addition, the observation of two or more metastable neutron stars might
permit one to differentiate among these models.

. The principal findings in Chapter 5 result from the requirement local
color neutrality in superconducting quark matter with and without neu-
trinos at both zero and finite temperatures. The magnitudes of these
chemical potentials for color and electric neutrality are sub-leading in p.
The corresponding free energy density costs are small and independent
of i at leading order with the free energy density cost for neutrality in
the 2SC phase being significantly larger than that in the CFL phase.
Consequently, and in agreement with Ref. [111], the bulk 2SC phase is
less likely to occur in compact stars at 7' = 0 and p,, = 0. In the NJL
model, a small 25C window does exist at relatively low baryon density.
However, since this window occurs at very low density it is likely to be
shut by the hadronic phase.

At finite temperature and neutrino chemical potential, the CFL phase
becomes less favored both because of its small specific heat and because
of its exponentially suppressed (by the factor exp(—A/T)) electron num-
ber density, which makes the free energy density cost of accommodating
lepton number large. In contrast, the 2SC phase has a larger specific
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heat and easily accommodates electron number, and is therefore the fa-
vored phase at finite temperature and lepton number. The inclusion
of Goldstone bosons in the CFL phase will tend to extend the region
in the T" — pu,, plane where the CFL phase is favored, since Goldstone
bosons contribute significantly to the specific heat and also allow for the
presence of electrons. In the absence of Goldstone bosons, a first order
unlocking transition occurs from the CFL phase to the less symmetric
2SC phase with increasing lepton chemical potential.

Although the question of the existence of quark matter inside neutron stars
cannot yet be definitively answered, the effects of the presence of quark matter
on the evolution of a proto-neutron star has been clarified. Metastable neu-
tron stars, those which collapse to a black hole after deleptonization, offer an
excellent opportunity to test for the presence of deconfined quark matter. The
abrupt cessation of the neutrino signal provides clear and unambiguous evi-
dence of a softening phase transition. The timescale over which this cessation
in the neutrino emission occurs will give some information about the nature
of this softening component.

Although not discussed in detail here, the long-term evolution of a neutron
star may also provide information about the possible presence of quark matter.
Although the cooling characteristics of a neutron star with quark matter can
often be reproduced in models without quark matter [92], advances in under-
standing the microphysical issues involved in neutron star cooling will likely
improve this situation. In a star consisting entirely of strange quark matter,
the cooling characteristics are more unique [61]. A strange quark star would
likely be anomalously hot and compact [60], and observation of such an object
would be difficult to explain unless it was a strange quark star.

There are several questions that have been left unanswered. In particular,

1. This work has focused on times longer than approximately 1 s after core
bounce, after which effects of dynamics and accretion become unim-
portant. Studies of the v signal during the first second, during which
approximately 1/3 of the energy is emitted, and at late times, as the
star becomes optically thin to neutrinos, requires more accurate tech-
niques for v—transport. In addition, the earliest time periods require
the incorporation of hydrodynamics [101, 102, 103, 104, 105].

2. Heterogeneous structures in the quark-hadron mixed phase region and
the coherent scattering of neutrinos on these structures have been ad-
dressed in Refs. [54, 55]. Additionally, neutrino emissivities and opac-
ities from Goldstone bosons in the CFL phase have also been com-
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puted [63, 64]. However, a quantitative study of their influence on ob-
servable neutrino fluxes from proto-neutron stars remains to be under-
taken.

3. Effects of the CFL-Hadron mixed phase [51] and crystalline supercon-
ductivity [118] have not been adequately addressed with regard to their
observable consequences for supernova neutrinos. These possibilities al-
leviate the cost of enforcing color neutrality, since in these cases it is a
global constraint. In such phases, however, energy costs associated with
gradients in particle densities must be met.

4. Goldstone bosons created from the spontaneous breaking of chiral sym-
metry will make quantitative corrections to the phase diagram of quark
matter. This topic is currently under active investigation.

5. The effects of quark superconductivity and of the different phases of
color superconducting quark matter that are likely to be traversed by the
inner core of a proto-neutron star during its early thermal evolution, have
not been addressed. The task ahead is to study how these phases, and
transitions between them, influence observable aspects of core collapse
supernova, neutron star structure, and thermal evolution.

At the time of writing, we are fortunate that several neutrino observatories
are in place and many more are under construction and consideration. The
ever increasing fiducial volumes of these detectors are capable of detecting
several thousands of neutrinos from a galactic core-collapse supernova unlike
the handful of neutrinos that were detected in the supernova explosion of
SN 1987A. In addition to revealing the fundamental properties of the various
flavors of neutrinos, and uncovering the supernova explosion mechanism itself,
the detection of such neutrinos offer the promise of delineating the properties
of strongly interacting dense matter beyond the reach of laboratory studies
and shed light on the synthesis of heavy elements of which we are made of. In
short, the predictions contained in this thesis, including the direct observation
of the formation of a black hole, may be tested.
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Epilogue

Neutrinos Reveal Star’s Inner Secrets !

Physical Review Focus features a couple of articles every month to be
presented in a way that is accessible for students and researchers in all fields
of physics. The material in Chapter 4 was featured as a Physical Review Focus
article, and is reproduced below.

!Text by Geoff Brumfiel. Reprinted with permission from Phys. Rev. Focus
7, story 26, 1 June, 2001 (http://focus.aps.org). Copyright 2001 by The American
Physical Society.



Astronomers go to mountaintop observatories to get a good look at the sky,
but the best view might be over a mile underground inside neutrino detectors.
Neutrinos—neutral particles that regularly fly through the Earth undetected—
may provide astronomers with information that light cannot. A paper in the
4 June PRL predicts that neutrinos from proto-neutron stars might reveal the
existence of exotic quark matter inside these stars. It also shows that the
presence of such matter could lead to the birth of a black hole, an event the
authors believe could be detected from neutrino observations.

When a star explodes in a supernova, it leaves behind a dense core, called a
proto-neutron star, which contains an equal number of protons and neutrons.
The impulse from the supernova quickly converts the protons into neutrons—a
process that releases many energetic neutrinos. Seconds after the explosion,
the conversion is complete: The proto-neutron star has become a neutron
star—a cold, dead star made primarily of neutrons. By the time the light and
dust from the supernova dissipate, the proto-neutron star is gone.

”Observing the neutrinos is the only way we can observe the proto-neutron
star,” says James Lattimer of the State University of New York (SUNY) at
Stony Brook. In 1987, detectors around the world recorded nearly twenty
neutrinos from a proto-neutron star in the heart of a supernova. Neutrinos
like these, Lattimer says, could provide information about the life of such
a star. In their paper, the SUNY team calculates the neutrino energy that
would be detected for proto-neutron stars made of three proposed forms of
”quark matter”: matter in which quarks become unglued from each other,
matter filled with baryons containing strange quarks, and matter filled with
kaon particles, which also contain strange quarks. In each case, the group
describes a signature neutrino signal that could be detected at facilities like
the new Sudbury Neutrino Observatory in Canada or Super-Kamiokande in
Japan.

The team also shows that these detectors could watch black holes form.
Their calculations reveal that the presence of quark matter could ”soften” the
proto-neutron star, making it easier to compress. In certain cases, the team
believes that this softening could cause the proto-neutron star to collapse under
its own gravity into a black hole. If that happened, detectors on earth would
see a sudden cessation of neutrinos from the star. ”You could catch the [black
hole’s formation| during the time it’s happening, and that’s important,” says
Madappa Prakash, the head of the SUNY group. ”It’s like catching a thief in
the act.”
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Figure 6.1: Watching the Stars. At the heart of the Sudbury Neutrino
Observatory in Canada is a large spherical vessel of water surrounded by 9500
photodetectors. It’s one of a handful of facilities worldwide that could glimpse
a proto-neutron star or witness the birth of a black hole.
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The new neutrino detectors will have ”unprecedented sensitivity,” says
Adam Burrows of the University of Arizona in Tucson. Burrows believes that
the SUNY team’s calculations will help these detectors analyze neutrino data
from the next supernova. But until such an event occurs, he adds, it will be
impossible to tell exactly what a proto-neutron star looks like.
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Appendix A

Thermodynamical Potential in the Hadronic
Phase

In the mean-field approximation, the meson fields appearing in Eq. (2.1)
may be replaced by their ground-state expectation values [30]:

o—0 W — Gu0Wo P — du0p0 - (A.1)

For matter that is static and uniform, these quantities are constants. The
Kronecker delta functions in the last two relations ensure rotational invariance.
Use of these mean fields in Eq. (2.1) results in

L =>B (Wuau — 9uB7Y’wo — Go7 potss — Mp + gopo — /,LB%) B
B

1 K A
—5777370'2 - 50'3 - 50'4
+1mw+<4w4+m -1—§44 (A.2)
2 0 4,gw 0 2 ppO 4'gpp0 °
This is analogous to the Dirac Lagrangian for free baryons, but with an ef-
fective mass Mj = Mp — g,po and an effective chemical potential vg =

1B + guBwo + gpptappo. The thermodynamic potential per unit volume and
energy density are given by [119]

Q
_V - Z/ 14+e (EB*VB)/T)
1 55 2 2, 1 99
—Emga +§m wy + §mpp0
K 3 A C 44, & 44

67 517+ 979w + 579000

d3k Ep
£ = Z/ 1+6EB I/B)/T)




1 1
+-m2o® + —mlwg + —mf,pg

2 2 2
K3 A4 Cuyq, €4y
+g<7 T 547 +§gwwo+§gpﬂo; (A.3)

where we have defined F% = M}? + k?. The Euler-Lagrange equations for the
meson fields are

mio = SR . %03 + 2903 <BB>
B

m2wy = —égfng’ + Zng <B%B>
B

mapo = —ggﬁpg +> 9,5 (BYB) . (A.4)
B

The expectation values of the field operators are

o <o o

(BwB) = 2f 5;?3]‘5—5 (L elEmmear) . (A.5)

These results are utilized for the equation of state in Chapter 2.
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Appendix B

Neutrino-Quark Scattering

In this Appendix, we include a derivation of Egs. (3.5) and (3.8) as well
as extend the analytic results of neutrino quark scattering originally derived
in Refs. [85, 81]. Also, the analytic results are compared with the exact
calculation.

B.1 Evaluation of the Angular Integrals from
Egs. (3.5) and (3.8)

B.1.1 The integral I, in Eq. (3.5)
The integral in Eq. (3.5) reads as
Io = [ d9d%d04 (BiE> = 5 - 53) (BsEa — 5 53) 6° (51 + 55 — 7 — i)
(B.1)
Defining P= p1 + p5, the delta function can be rewritten as
20 (ps— 1P = 13]) 0% (U — Qp_) - (B.2)

The two-dimensional delta function may be used to perform the {2, integral,
which gives unity. Now define x as the cosine of the angle between P and p3
so that d€)3 = d¢dx. The one-dimensional delta function then becomes

. . P P2 +p2_p2
) (p4 — |P—p3|) = pg;‘})(s (x — (W : (B.3)

The dot product of p3 and p; can be rewritten by eliminating x:

P2 _ 2 _ 2
T ThT by (B.4)

ps-pi=ps- (P—p3) =psPz—p} = 5
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The ¢ integral gives 27, and after integrating over x, we get

_27T

I, =
P3P4

/ dQQ% (E\E» — pi - 1) (EsEa + (03 +p3 — P?) /2) . (B.5)

We must remember that we are limited by |z| < 1, so there are restrictions on
P:
P <ps+ps, and P > |ps — p4l . (B.6)

Now, define y as the cosine of the angle between p; and ps so that we may

write dQ2y = dgody and P? = p? + p3 + 2p;pey. Noting that PdP = p;p.dy,
the integral becomes

4 2

I T

= /P (4-P?2) (B - P*)2)dP, (B.7)

Pmin

where

A = (BB +p8 +12) /2,
B = <2E3E4 + 3 +pi) /2,
Puin = ma’X(|p1_p2|7‘p3_p4|) 7and
Pmax = min (pl +p2,p3 +p4) . (B8)

After performing the P integral, we arrive at

2

m
= B [3 (Pl — Pin) — 10(A+ B) (P2, — P3,) +
60AB (Puax — Puin)] - (B.9)

This is the result in Eq. (3.6).

B.1.2 The integral I, in Eq. (3.8)
The integral I, has the form

Iy = [ d90d0udQ (BB, = 5 - 5i) (BaBy = s - 1) 6° (51 + 5 — 5 — i)
(B.10)
With P = p; — pi, the delta function may be written as

2’8 (p2 = 1P+ 15|) 0 (%2 = s ) - (B.11)
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Integration over {2, yields unity because of the two-dimensional delta function.
Now define x as the cosine of the angle between P and p3 so that d{23 = d¢dz.
The one-dimensional delta function becomes

2 2 2

= - D2 pQ_P —P3
—|P = — e e ———— . B.12
5(192 | +p3|) PNz (95 ( 2psP )) ( )

The dot product of p3 and p3 can be rewritten by eliminating x:

B+ P -5}

- (B.13)

P Ps =5 - (P +p3) = psPx + pj =
Performing the integral over x, we obtain
27 1 R
I, = P /dQ4F (E1Es — pi - p) (E3E4 + (P2 — 5 - Pg) /2) - (B.14)
3D2

There are again restrictions on P:
P < py+ps, and P > |ps — psl. (B.15)

Now, define y as the cosine of the angle between pi and pj so that d€)y = d¢sdy
and P? = p? + p? — 2p1psy. The integral then becomes

47 Prmax
= /P (P/2-C) (P*/2 - D)dP (B.16)

where
C = (“2B:E+pi+p3)/2,
D = (-2B.Ei+p}+pt) /2,
Prin = max (|p1 — p4l, [p2 — p3]) ,and
Prax = min (pz +p3, p1 +pa) - (B.17)
This result is equivalent to the replacements ps <> p, and Ey <+ —FE, in the
result for integral I, (Egs. (B.7) and (B.8)) as mentioned in connection with
Eq. (3.8). It is worthwile to note that, when the neutrino momentum p4 may

be neglected in comparison with other momenta, the conditions on P in Egs.
(B.8) and (B.17) reduce to the “triangle inequalities”

p1 > |pa —psl p2 > |p1 — psl and  p3 > |p1 —po|. (B.18)

which are encountered in the evaluation of the quark direct Urca process.
The calculation of the integral I. in Eq. (3.8) proceeds exactly as the
calculation for I, above, but with the replacements noted in Eq. (3.8).
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B.2 Scattering of Degenerate Neutrinos

In the neutron star problem the quarks are always degenerate, since quark
chemical potentials are on the order of hundreds of MeV, while the temperature
is no more than tens of MeV. Since only particles near the Fermi surface are
allowed to participate in scattering reactions with neutrinos, an excellent first
approximation is to replace the quark energies by their chemical potentials:
Ey ~ puy = py =~ Ey = FE3 ~ FE;. This justifies an expansion in terms of
the neutrino energy transfer ¢qo = F; — F5. In this section, we will treat the
neutrinos as degenerate, and the next section will consider the case in which
the neutrinos are non-degenerate.

B.2.1 Results to leading order in energy transfer ¢

The replacement of the quark energies by chemical potentials allows us to
separate the energy integral from the angular integral. The energy integral

E
Iy = / dEydE4dE, <E2E4§3) §(Ey + By — By — Ey)
1

can be calculated analytically; the result is
T27T2 + (El - M1)2 ’/T2
_ 2 ~ T 22
IE = Mo ( 2 (1 + e(El—Ml)/T) ~ 4 /’LQT . (BQO)

For massless quarks, the term involving I. does not contribute. In the limit
e > F4, the remaining integrals can be simplified. Explicitly,

472 ln2+E1| d P 472 (u2t+BEr P
I, ~ T / —(PZ—a)2z—2ﬂ2/2 1—(P2—oz)2
P1P2P3Ps S ps—Er| 4 WsE? Jup—p 4
167T2E1 9 2
= 1542 (104 + 5y + EX)
4 lu2+E1] dP 2 Ag? [metEi dP 2
I = 7/ - (P"=5) “ﬁ/ — (P?-p)
P1P2p3Ps Je—Er| 4 VPEE? Juy—m, 4
167°E) /., ,
= g (1043 — 5By + E7) (B.21)

where o = (g + E1)2, B = (u2 — E1)2. In obtaining this result, we have used
that s ~ F4 ~ uy and E; =~ F3. The case puy < F; may be treated by the
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replacement |us — E1| = Ey — g in the limits of the integral. Collecting these
results, we arrive at

1/2
ODs Gl 2 | _a,0] (TEA
= E — T — X
1% 573 [( L) ] o

[(V? +A42) (10 + 22) +5(2VA) 1] , (B.22)

where x = min(Eq, po)/max(E;, u2). This is the result quoted in Eq. (3.9) [85,
81].

B.2.2 Results to all orders in ¢y for the case us > F;

In this case, we cannot replace Fy and E, with their chemical potentials,
nor replace F3 with E; in Ig, I, and I,. Because I, and I, now depend
on g9 = E, — E5, E5, and FEj, the energy integrals cannot be performed
independently of the angular integrals. The angular integrals are:

I, = /P :m % (V+A)° (P - A) (P? - B)
I, = /P:m % (V-A)?(P-C)(P*-D)

Pupint = max (|E; — Es|, |E3 — E4l)

Praxi = min(|Ey + Es|, |Es + E4|) = Ey + E»

Ppine = max(|E3 — Fy|,|E1 — Ey|) = |E3 — Ey|

Praxe = min(|E3 + Es|, |E1 + E4l) - (B.23)

The quantities A, B, C, and D are defined in section B.1 above.

The energy delta function may be used to eliminate E4 everywhere. We
then reduce the limits on the P integrals to a “closed form” by ensuring that
for each integral, the lower limit is smaller than the upper limit and that there
are no absolute value signs. Py, can be simplified to max (|a|, |a — 2go|),
where a = F; — E,. The equation |a| > |a — 2¢o| can be satisfied in two cases:

1.a>0:a>|a—2q| = (a>2g and gy > 0) or (a < 2¢p and a > —qp)
2. a<0: —a>l|a—2q| = (a>2g and a < q) or (a < 2¢p and gy < 0)
Similarly, the equation |a| < |a — 2¢y| can be satisfied in two cases:

1.a>0:a<l|a—2q|= (a>2g and gy < 0) or (a < 2¢y and a < qq) ,
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2. a<0: —a<l|a—2q| = (a>2g and a > q) or (a < 2qp and ¢y > 0)

The quantitiy Ppaxe = E3 + Fo = E1 — qo + E5 when ¢9 > 0 and E; + E, =
E; + E; + qo when qo < 0. Slmllarly, Poing = E3 — By = E7 — qo — FE5 when
Ey, < Ey — qo and Fy — FEs=FEy,— FE; + qo when Fy > E — qo- UtlllZlng these
results, the cross section per unit volume may be written as

o Eq1/2 E1—-2q0 E1+Es
o= [ dw [ dEQ/ dPfa
\% 0 0 E1—Es
Eq/2 Ei1—qo Ei1+E>
¥ / dao / dE AP f4
E1—2q0 E1—E>
E,— 2(10 E1+E>
+ / dgo / / dPf4
E1—qo —E
E1+E»
+ / qu/ dEz/ AP f,
—00 E1—2qo Es—FEr
0 Ey— 2qo E1+E>
+ / das / AP,
—E» —E2—2q0
Ey E1+E>
+ / dgo dE, / AP,
0 —FE1+2q0

0
dqo

_E2

)
fie
L
[ / .
[
Jor
I

E1+E>
" dE, / AP f4

—FE2—2q0

/ —E1+2q0
0 E1—E>—qo
+ d dP
/—oo g /Ez-I-ErHIo fB
0 E1+qo0
d dE dP
t ,KOO 90 2~/E'2+E1+QO fB
Ep 1—q0 E2—qo
d dE dP
T / q0 2/15'1-|-15'2 90 fB
E1 —FE1+qo
0 E1—qo Ei1+E2—qo
where,
. 3G2 2 2 A 2
Fi = Jomrh (1= 1) (1= ) (V4 4 (P2 = 4) (P~ )
_ 3Gk A —0)(P*-D) (B
fo = Jogr (L= f) (L= f) (V= A (P* = C) (P~ D) (B.25)

The first, second, sixth, and eighth integrals in Eq. (B.24) contribute to f4 for
different ranges of Fs to the integral when ¢ is positive, and the third, fourth,
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fifth, and seventh integrals contribute to f4 for the same ranges of E, when
qo is negative. The upper limit in the first two integrals is further restricted
to qo < E1/2, since otherwise, F1 — 2gy < 0 and the upper limits are smaller
than the lower limits. The contributions to fg can be analyzed similarly.

The F, integrals are of the form L,, given below in section B.4. In the
case us > FE1, a < 0 for all of the polylogarithmic integrals except for Ey = oo.
When a < 0, the polylogarithms vanish, and so the integrals vanish unless the
upper limit is infinite. The asymptotic values of the L, at —oo give

% /0 d FQOG%‘EI

> = e (V' +A?) Fi_ + (2VA) B, |

+ /O " do gﬁg} (V2 + &) Py + VA B], (B.26)

where F is the factor (1 — f3(Fs)) (1 — %)™, 2T = qo — pia + pia, and Flior2),+
are given by
Fi_ = +60u; +6E? 4+ 20m*T? — 15E,q + 20q;
Fy,_ = 30usE; — 60u9qo
Fi. = p3(60E; — 180goF} + 180¢3 By — 60q))
+6EY — 15gyE; + 20q3 EY — 30g3 E? + 30, By — 11q;
+77T? (20E3 — 60g0 7 + 603 E1 — 20q7)
Foy = +30uE] — 60qoueE} + 60q5u By — 30gg s (B.27)

The gy integrations are detailed in section B.4. The final result is

ops _  GFT? ) ) ) o ,
VT 20Ew [(V +A ) (20u2E17r + 420¢ (3) 2B\ T
+15u5m' T + 2E{7” + 10ETT'T” + 140((3) Exr°T*)
+ (2V.A) 101 F77?] (B.28)

Figure B.1 shows the result above, in addition to the exact result from
Egs. (3.4) through (3.8) and the first order result of Eq. (B.22). The first
order result gives a good representation of the exact cross section, and the
higher-order approximation is nearly indistinguishable from the exact cross
section.
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Figure B.1: The cross section per unit volume for neutrino scattering from
quarks. The top panel varies the incoming neutrino energy (E;) and fixes the
quark chemical potential at pus = py = 507". The bottom panel varies the
quark chemical potential u, = 4 and fixes the neutrino energy F; = 207". In
both panels the solid line is the exact result from Eqs. (3.4) through (3.8), the
dotted lines is the first order result of Eq. (B.22), and the dashed line (often
hidden under the solid line) is Eq. (B.28)
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B.3 Scattering of Non-Degenerate Neutrinos

The analysis up to Eq. (B.26) is correct also for lowest-order results for the
scattering of non-degenerate neutrinos, because the essential aspects depend
only on the degeneracy of the quarks, not the degeneracy of the neutrinos.
The terms of highest order in py from equation (B.27) give

o 4G V2 + A? 0
]\‘I/DS _ w15 ( - ) [/ dgogo F1—
T _
Ey
dgo g) ( — 3¢5 By + 3q EY E3)] (B.29)
1

The first gy integral is negligible because it is a function of powers of the
temperature instead of powers of F;. The ¢y integration effectively replaces
g with E7™/(n + 1) (see section B.4). This gives

ONDS . GFM2E3(V2 + A2)
Vo b3

(B.30)

This reproduces the formula from [81].

B.4 Integrals Expressible as Polylogarithms

The integrals L, defined by

2

In=| B AT en) (1 + oo ) (B:31)

where a = (Ey — p9)/T, and z = qo/T can be expressed in terms of polyloga-

rithms
n

Z J+n+1En—jTj
1—e* 4 " (n - )

L,(F5) = fn ) (B.32)

where &, = Li,(—e®) — Lin(—e‘”z). When Fy — oo, the integrals are given by

L1 = (2#2 - TZ)

T
(342 — 3Tzpy + 2°T2 + 7°T7) . (B.33)
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The ¢o integrals in Eqs. (B.26) and (B.27) can be written explicitly in
terms of polylogarithmic functions:

T Zn
I, = / d
X Xho M=e5) (1 +em)™

_ :Zi K__d> o z”] [Lis (=e"**) = Lic (")) (B.34)

dx

where z = E, /T, 2 = qo/T, x = 1+¢€" and h = (u; — E;)/T. Here, we collect
some useful resutls by neglecting terms of order e™”.

For degenerate scattering, h = 0, and it is convenient to separate the
integrals into the positive and negative regions of z:

o0 Zn
I,. =~ / d
X ,+ X 0 (1 _ e_z) (1 + ez) Z
I " Zn d
R z
Xlm, X ow (T =) 1 +e)
2
m
IL+ = IL— Rﬁ;;
7
I2a+ = _125_ = ZC(3)
4
™
I&+ = Ii_-kjig
93
I4a+ = _'[4;_ ~ ZC(5)
6
™
I5,+ = —15,, ~ g . (B35)

For non-degenerate scattering, h — —oo, we can ignore the latter term in
the denominator of Eq. (B.34). The integrals I,, _ in this case are proportional
to powers of the temperature and can therefore be neglected. The remaining

positive portions give
xn+1

Ly =~ (B.36)

n+1’
This result is used for the integrals in Eq. (B.29).
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Appendix C

Color Superfluidity

In this Appendix, the Lagrangian in Eq. (5.2) is treated in the mean-
field approximation from which the corresponding thermodynamic potential is
derived. This result enables the calculation of all other physical quantities.

C.1 The Derivation of the Mean-Field La-
grangian

We note first that g¢© is a pseudoscalar under Lorentz transformations,
while g°7%¢ is a scalar. Instanton interactions are known to favor the scalar
interactions at high density [42, 43], so we will take the pseudoscalar contri-
bution to be zero. The Lagrangian (without the psedoscalar terms) from Eq.
(5.2) is [113, 114]:

8
L = g5 (i@ —mos — py) g +Gs Y (‘7)‘?@)2
a=0
+GprgY_ Y. (%ai’y%ijkﬁamqj%) ((jzga'i756iljlk6a’ﬁ17%"ﬂ’)
k7
—Gp [detfq‘ (1 — i75) q + det;q (1 + i75) q] , (C.1)

where color is represented by Greek indices, flavor by Latin indices, \° =
\/2/31I3x3, and the charge conjugate Dirac spinors are defined by (Cy*C = v#T
and CT = —QO)

) ) i . \
¢ =0g7" and @° = ( qT) P =70 = ¢ Cy =¢"C. (C.2)

Note that the chemical potential terms are unaffected by the manipulations
that follow.
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In the mean-field approximation, the four- and six-fermion interactions
may be written in terms of two-fermion interactions by applying the following
rules [39]

Dot = (G1thn) Potds + Dt (Vatha) — (Gathr) (o)
D1t Pothatatis = (Prr) (Pathe) Paths + (Grthn ) Pty (Baths )
+41¢ <1/_J2¢2> <1/_J3¢3>
—2 <1/_111/)1> <Tz21/12> <1/_)31/13> :

We begin with the G term in Eq. (C.1). Using the explicit form of the A
matrices, we may write

(C.3)

S o (aX)? = 2 ()’ +2 (dd) +2(s5)? (a=0)
+ (ad)? + (du)’ (a=1)

— (ad)® - (du)” (a=2)

+ (au)? + (dd)” (a=3)

+ (as)® + (5u)® (a = 4)

— (as)” — (su)” (a=5)

+ (ds)” + (sd)? (a = 6)

—(ds)" ~ (s)? (@a=7)

Lau)? + 3 (3d) +4(55)° (a=8)

(C.4)

Utilizing the result in Eq. (C.3), and defining o« = (au), f = <Jd>, and
v = (8s) gives

8
Z (cj/\“q)2 =2Gg [Qaﬂu —a? +2Bdd — 5% + 2755 — 72] )

a=0

(C.5)

Employing the rule in Eq. (C.3), the term involving G'prg may be written
as

GDIQ Zk: z <qiai,y5€ijkeamqj%> (qga’i756i’j’k€a/ﬁl7qj/ﬁ,)
p
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4 <an'V}/5€mk aﬂ’yq ﬂ) <qZ a/’V}/5€ZJ k o' B 'yq_,ﬂ’>
<q 217 €k e ""37q]ﬁ> <qZ a,z'y5el 'k B g, 15/> ) (C.6)
In what follows, the notation
AR = <q,, ik B ﬂ,> (C.7)

will be employed. Defining n = i7%¢"7'%¢¥'#'7 = —pt, the Hermitian conjugate
of A¥7 is

AR = — {(Otygt) = —<(C@T)Tn(q*7°)T>
= (¢""0m"a) = - (" C'm"'q)
= —(@°'m°a) = (T e e gar) - (C-8)

In this expression, we can relabel indices i’ <> j', o/ +» f’ and k < v without
changing the expression. Thus, the diquark term becomes

G XY (@577 e ™ qi) AR + (Giain e T e#1¢) ARTH — ARTARH]
k v

(C.9)
The definitions (see Eq. (5.8))
Aij = ZGDIQW%MGO‘/BA’AM
A”T = 2Gprgiv°eFe®PT AR (C.10)
simplify the diquark terms in the Lagrangian to
“ 12
AV
C Atj ijt C ap
ZZ _qzaA ,quﬂ+ QZaAoZB 93 — 4GDIQ . (C.ll)

For the term involving Gp in Eq. (C.1), the only purely scalar terms are
the ones along the diagonal, where the flavor indexes are the same. Ignoring
pseudoscalar terms, the determinant is given by the product of the terms along
the diagonal. This gives

— —GDﬂ(l—i75)uJ<1—i7)d§(1—w)
—GDa(l—l—i'yS)uJ(l—i—i'y )d (1+i’y )s
—  —2Gpuuddss . (C.12)

113



Utilizing Eq. (C.3) reduces the six-fermion interaction to a sum of two-fermion
interactions, giving

—2Gp [auﬁy + ddary + ssaff — Qaﬁy] i (C.13)
Collecting the results from Eqgs. (C.5), (C.13), and (C.11), we have
L = q(i0—mgr)q
+2Gg [Qaﬂu —a? +2Bdd — % + 2755 — 72]

—2Gp [auﬁ’y + ddary + 3sa8 — Qaﬂﬂ
1 1 AY ’

_C Rij _ Xijt C aB

+ zk: 27: §‘ZiaAzangjﬁ + §QiaAqujg " il (C.14)

The constant terms that do not involve any fields give constant terms of the
same form in the thermodynamic potential given in Eq. (5.5). Eq. (C.14)
above allows us to define an effective quark mass M for a quark with flavor 2

(1 # j # k). Explicitly,
M; = my; — 4Gs (@) + 2Gp (G;495) (Tuqk) - (C.15)

This is exactly the same form as Eq. (2.6), which is unchanged by the presence
of the superconducting gap. Six-fermion interactions which mix contributions
from (ggq) and (Gq) condensates, which are not considered here, would modify
this dynamically generated mass.

In the Nambu-Gorkov formalism, we construct 8-component spinors of the
form

‘Ilz(q qT> and ‘Ilz(q q—T>. (C.16)

Consequently, the Dirac term in the Lagrangian appears twice, once for the
g and ¢, and once for ¢ and ¢. The diquark term in the Lagrangian is
simply multiplied by a factor of 2. In terms of these spinors, the portion of
the Lagrangian which involves the fermion fields is given by

_|ip—Mm;  AbiC
cog| P M . (C.17)

CAY, " + M;

It is understood that at the end of the calculation we shall have to divide this
result by a factor of two in order to avoid double-counting.
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C.2 The Thermodynamic Potential

We begin by noting that, in our case, ¥ is not independent of the repre-
sentation of v matrices, since

7= ()7 = (d7°) 0 = """ (C.18)

The same comment applies for the conjugate momentum II also, since :
= =it (C.19)

In the following, we will only use the Dirac representation, which has 7°* =
AT = 40 and C = iy240.

Observing that,

Tt = (2%, 7), z, = (2°, -7),

" = (8°,—0d),  and 9, = (8°,9) (C.20)

— i = i7°9y +W-5 and T =it — iv°8y = —1°0,

yields
00 _
zHa—T —H+ puN =¥,DY, (C.21)
where
—08, +i5 -V — My + un° Atc
p=| " K Y a ) . (C22)
CA —%0; + i7" -V + My — pry°

Eq. (C.21) may be converted in to momentum space through the transfor-
mation

= 1 (P T+wnT —
V(% 1) = WZZe(p Twn )\Il(p,n) ) (C.23)
nop

This decomposition implies that ¢ transforms differently in the upper half
space of the 8-component spinor in comparison to the lower half space. In

115



momentum space, we have
—H+uN =
_ | —iYwn =5 — My 4 p° Afc
U, 3 U, (C.24)
CA —iy%wn, =77 P+ My — pry°

We multiply each 4 x 4 entry by 4° which will not affect the value of the
determinant and express D as

D = —iwplges + D' )
oo | TP MY YPATC
CA T+ Mgy —

The eigenvalues of D' (which is now Hermitian) can be calculated. These
eigenvalues will occur in pairs with each member of the pair being the negative
of the other. This allows us to calculate the determinant of D, which reads

detD = (—iwn + /\1) (—iwn - )\1) (—iwn + )\72) (—iwn — )\72)
= (wi + )\%) (wi + )\$2> : (C.25)

The partition function is [119]

mZ =33 IndetD. (C.26)

The Matsubara sums over the frequencies w, are formally divergent, but these
are harmless since an infinite constant may be removed by applying the identity

Xn:lnﬁﬂ (w? +27) =/1de (%—L) :g+1n(1+e*w). (C.27)

1+¢f

Notice that since the LHS is invariant under x — —z, the RHS must be also.
The partition function is given in terms of the eigenvalues above:

InZ = 2/ d'p 3§:l;f+Tln(1+e )] : (C.28)

where we have divided by a factor of two to account for the double counting
inherent in the Nambu-Gorkov formalism. This result is utilized in Eq. (5.5).
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Eq. (C.28) requires the calcuation of the eigenvalues of a 72 x 72 matrix.
This matrix is block diagonal, with two 12 x 12 blocks corresponding to the
two Nambu-Gorkov copies of the matrix that “pairs” up-red, down-green, and
strange-blue quarks. The remaining diagonal matrices are the two Nambu-
Gorkov copies of 4 x 4 matrices that pair dr — ug, sr —ub, and db— sg quarks.
In principle, the complication of the Dirac structure in this matrix may be
removed by going to the second quantization formalism, however; this is at
the expense of introducing proper expressions for spinor normalization as done
in Ref. [114]. In the limit where all of the chemical potentials are equal, as
in Refs. [113, 114], the matrices all become 4x4 or smaller. In the CFL limit
(all quarks massless and all gaps equal), the eigenvalues and their respective
degeneracies are:

:I:\/(p + )% 4 4A2 2 times
+1/(p — p)* + 4A2 2 times
V- (C.29)
+v/(p+ p)” + A? 16 times
+v/(p — ) + A? 16 times

while in the 2SC limit (only the strange quark massive and only A, is non-
zero), the eigenvalues and their respective degeneracies are:

+(p— p) 4 times
t(p+p) 4 times
+(E — p) 6 times (C.30)
+(E+p) 6 times
:I:\/(p + 1)+ A2, 8 times
j:\/(p —p)? + A2, 8 times

where E? = p?> + m?2. The eigenvalues given in Egs. (C.29) and (C.30) provide
approximations to the full eigenvalues in Eq. (5.5).
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